Network Compression — Part 2

Lecture 10 for Advanced Deep Learning Systems

Aaron Zhao, Imperial College London, a.zhao@imperial.ac.uk

Table of contents

1. Introduction
2. Winograd Transformation
3. Knowledge Distillation

4. Chaining Compression Algorithms

Introduction

Neural Network Compression

Winograd Transformed Convolution

Low-rank Approximation

Chaining Compression Algorithms

Knowledge Distillation

Winograd Transformation

Let’s replace expensive operations with cheaper ones

Very simple initiative: let's replace expensive operations (multiplication)
with cheap ones (addition).

Let’s replace the following

Yy =X XX (1)

With this one
y = x+x (2)

Winograd: An lllustraiton

8o
d di do
F(2,3) = 3
.3 [d3 - dJ & @
82

F(2,3) has in total 2 x 3 = 6 multiplications

Winograd: An lllustraiton

my + my + m3

&0
dy di o
(0) [d3 d4 d5‘| 81

my — M3 — Mgy
&2

do — db)go

8o g1 +&

= ()
(dl 4 dz)go+g1+g2
= (2 —)&
my = (di — d3)&2

Now we have in total 4 multiplications but a bit more additions

Winograd: An lllustraiton

Input (tiled) Input/Filter transformation Mulnplncanon Output transformation Qutput

a
_a™M’

y =

Internal tile size:
a=m+r -1

Rewrite it in matrix form

Y =AT[(GgGT) - (BT dB)]A (5)

Basically, g and d would be transformed values to the winograd space to
do a point-wise multiplication.

Knowledge Distillation

The Teacher-student Paradigm

The general idea is to have a capable model (teacher) and use its output
to ‘teach’ a smaller student model.

#lg o soft labels

predictions

distilled| knowledge

hard labels
e predictions € trle label

Training data

Soft-labels

We construct a soft label, this is normally the final layer of the
embedding from the larger model:

Ysoft = fw(X) (6)

Then we use this soft label to form a loss function with the output of the
small model (student).

Lig = g(¥softs fur (X)) (7)
where £, (X) is the output of the student model.

Normally, this is actually added to the actual loss as an additional
regularization term:
E — Ece + Ekd (8)

Logits-based KD

Lid = g(ysofta fm//’(X)) (9)
where £, (X) is the output of the student model.

Function g is commonly /, norms, but can also be other functions.

Activation-based KD

Activation-based KD forms an additional regularization loss through all

(or a subset of) activation values to form the loss.

L
Ekd = Zg(y;'ctv faict(X))

i=1

where L is the total number of layers.

(10)

Teacher Model
b. > TS
|
Distillation Loss
i
Student Model

10

Attention-map for Activation-based KD

As we have explained, the design of the regularization loss g can be fairly
complex. Let's consider a layer's activation functions X, € REXHXW

We define an attention map as a function p : REXHXW _ RHXW For
instance, this can be:

e Sum of absolute values: p(x) = Z,CZI |x;]

e Sum of absolute values with power m: p(x) = Z,Czl [x;|™

11

Attention-map for Activation-based KD

Performant networks tend to have similar attention maps

12

Attention-map for Activation-based KD

Performant networks tend to have similar attention maps

B LQl QL
L=L = £ — - 11
e+ 3 2. o ~ T e (11)

where Qg and Q%- are vectorized version of activation values for the
student and the teacher networks respectively

B
The whole Z, 1 || HQ’ L= IQ‘
encourages the student network to have the same ‘attention map' as the

‘ |, part is an additional loss term that

teacher network.

13

Chaining Compression
Algorithms

Chaining Compression Techniques

In fact, many of the compression techniques are working on fairly
orthogonal spaces. A great idea to harvesting more compression rate is
chaining a bunch of them together.

14

Chaining Compression Techniques

Multiplying gains when you chain a bunch of compression algorithms
together The following example is what | have tried to run fine-grained
pruning and fixed-point quantizations on a CIFAR10 network. The
CIFAR1O0 network is a variant of VGG.

Method Bit-width ~ Density ~ Compression rate Top-1/top-5 accuracy
baseline 32 100.00% - 91.37%/99.67%
fixed-point (fixed) 4 100.00% 8.00x 89.64%/99.74%
dynamic fixed-point (DFP) 4 100.00% 8.00x 90.63%/99.68%
fine-grained pruning (pruned) 32 15.65% 6.39% 91.12%/99.70%
pruned + fixed 6 15.65% 33.92x 90.59%/99.68%
pruned + DFP 6 15.65% 33.92x 91.04%/99.70%

15

Deep Compression

The best quantization method pushes the compression rate to 8x with
less than 1% loss in accuracy.

Adding the pruning optimization on top of the quantization, we push the
compression rate to 33.92x with a even better accuracy.

NB: sometimes pruning serves as a regularization so you might have a
better accuracy!

16

Distinguish between Lossy and Lossless Compressions

e Quantization — Lossy Compression
e Pruning — Lossy Compression

e Decoding — Lossless Compression

Quantization: less bits per weight
Pruning: less number of weights g R Huffman Encoding
’

N
Cluster the Weights

I

1

1 .
same : Encode Weights

1

1

1

|
! \
! 1
! 1
original same : : same
network Y Code Book y '
! 1
i U E> !
igi ! | 1
or;?zu:al 9x-13x | Quantize the Weights 1 2;"3,1" 1| Encodelindex | ! S:x-‘:_ex
1 |with Code Book (reduction Ireduction
: {7 : N J
: Retrain Code Book :
\ !
~ -

17

Compressio and Re-training

e Quantization — Lossy Compression

e Pruning — Lossy Compression

e Huffman Decoding — Lossless Compression
Re-training becomes a critical operation to increase the performance
degradation from lossy compression.

However, lossless compressions do not cause any performance
degradation and thus has no need to use re-training.

Chaining these optimizations gives multiplying gains! Many of the
compressions are (partially) orthogonal.

18

Special harware suppo

This however normally means you need special hardware support!

e Sparse Matrix Multiplication supoort
e Decoder and encoder support for Huffman decoding

e Low-precision multiplication units

Col i
ven prr sram Bankjs) o Decode
End
[0dd per sRAM Banifu) | Adress) - ausotuendrss
L Accum
Pointer Read Sparse Matrix Access “f'::‘; Arithmetic Unit Act R/W

19

ntization with KD

KD, as a training framework, can also be used in conjunction with

compression algorithms.

Full-precision Quantized
Student Student
i Lprea
———————
Transformer layer Lerm

T8

Backward propagation, update i full-precision

w!*! = UpdateParameter (w', 525 1)

Full-precision
Teacher

7777777

Transformer layer

Distillation loss

L= temtores | u

Embedding
_ N |

20

Quantization with KD

Teacher network: full-precision network

Student network: low-precision network

Full-precision Quantized Full-precision
Student Student Teacher
Lyre

——————— T o emeeem
Transformer layer Lerm Transformer layer

Temarization Forward Distillation loss

W= 0Q, (W) Lx propagation L = Lyrm + Lprea Lx
——

Backward propagation, update in full-precision

e+ = e OL
e+ = UpdateParameter(w', 55, 1°)

21

Quantization with KD

Activation loss, the first distillation loss: knowledge in the embedding
layer and the outputs of all Transformer layers of the full-precision teacher
model to the quantized student model, by the mean squared error (MSE).

Full-precision Quantized Full-precision
Student Student Teacher
Lpre
------- R

Transformer layer Lerm Transformer layer

Forward Distillation loss

propagation L = Liym + Lprea
ey | NI

Ternarization
W=0uw)

H E

Embedding
5

Backward propagation, update in full-precision

e o o OL .
e = UpdateParameter (W', 2, 1°)

22

Quantization with KD

Activation loss, the second distillation loss: the loss between teacher
model’s attention scores from all attention heads in all layers and the
student model’s attention scores.

Full-precision Quantized Full-precision
Student Student Teacher
Lpre
------- D
Transformer layer ke Transformer layer

Forward Distillation loss . .

propagation L = Lirm + Lpred
ey | NI

Ternarization
0w

Embedding
N |

Embedding
| |

Embedding

Backward propagation, update in full-precision

P o OL .
e = UpdateParameter (W', 52, 1°)

23

Quantization with KD

Logits-based loss, the third distillation loss: the loss between teacher
model’s logits and the student model’s logits.

Full-precision Quantized Full-precision
Student Student Teacher

Lpr
——————— ML

Transformer layer Ltrm Transformer layer

Distillation loss

L= lom + Lo | I

Embedding
_ N |

T8

Backward propagation, update i full-precision

w!*! = UpdateParameter (w', 525 1)

24

Quantization with KD

With the KD-loss, TinyBERT generally has a better accuracy given the
same quantization budget.

X:;:"s‘; (i;'zf) MU Qop QMU SST2 CoLA STSB MRPC KIE

BERT 323232 418(x1) | 84.5/849 §75/909 920 931 581 89.8/894 906865 7LI
TinyBERT 323032 258(x16) | 84.5/845 88011 9L 930 541 898896 9L0ETI 718
Q-BERT BT 166770 - o846 - E - E
Q2BERT 43(x9.0) | 472473 6710059 613 806 0 4447 812684 527
2-bit “TernaryBER Tyyyy (0urS) 228 28(x14.9) | 833833 867001 OL1 928 557 §7.0R77 912815 729
TemaryBERT, 47 (ours) 228 28(x149) | 835/834 866/90.1 915 925 543 81986 9LIETO T22

Ternary TinyBERTwy (ours) 18(x23.2) | 83.4/83.8 87.2/90.5 89.9 93.0 530 86.9/86.5 91.5/88.0 71.8

Q-BERT 106 (x3.9) | 83.9/83.8 - - 929 - - - -
8-bit Q8BERT 106 (x3.9) -l- 88.0/- 906 922 585 89.0/- 89.6/- 68.8

8-bit BERT (ours) 106 (x3.9) | 84.2/84.7 87.1/90.5 91.8 937 60.6 89.7/89.3 90.8/87.3 71.8

8-bit TinyBERT (ours) 8-8-8 65(x6.4) | 84.4/84.6 87.9/91.0 910 933 547 90.0/89.4 91.2/87.5 722

25

	Introduction
	Winograd Transformation
	Knowledge Distillation
	Chaining Compression Algorithms

