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Introduction



Neural Network Compression

• Winograd Transformed Convolution

• Low-rank Approximation

• Chaining Compression Algorithms

• Knowledge Distillation
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Winograd Transformation



Let’s replace expensive operations with cheaper ones

Very simple initiative: let’s replace expensive operations (multiplication)

with cheap ones (addition).

Let’s replace the following

y = x × x (1)

With this one

y = x + x (2)

3



Winograd: An Illustraiton

F (2, 3) =

[
d0 d1 d2
d3 d4 d5

]g0g1
g2

 (3)

F (2, 3) has in total 2× 3 = 6 multiplications
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Winograd: An Illustraiton

F (2, 3) =

[
d0 d1 d2
d3 d4 d5

]g0g1
g2

 =

[
m1 + m2 + m3

m2 −m3 −m4

]
(4)

m1 = (d0 − d2)g0

m2 = (d1 + d2) g0+g1+g2
2

m3 = (d2 − d1) g0−g1+g2
2

m4 = (d1 − d3)g2

Now we have in total 4 multiplications but a bit more additions
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Winograd: An Illustraiton

Rewrite it in matrix form

Y = AT [(GgGT ) · (BTdB)]A (5)

Basically, g and d would be transformed values to the winograd space to

do a point-wise multiplication.
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Knowledge Distillation



The Teacher-student Paradigm

The general idea is to have a capable model (teacher) and use its output

to ‘teach’ a smaller student model.
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Soft-labels

We construct a soft label, this is normally the final layer of the

embedding from the larger model:

ysoft = fw (X ) (6)

Then we use this soft label to form a loss function with the output of the

small model (student).

Lkd = g(ysoft , f
′
w ′(X )) (7)

where f ′w ′(X ) is the output of the student model.

Normally, this is actually added to the actual loss as an additional

regularization term:

L = Lce + Lkd (8)
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Logits-based KD

Lkd = g(ysoft , f
′
w ′(X )) (9)

where f ′w ′(X ) is the output of the student model.

Function g is commonly lp norms, but can also be other functions.
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Activation-based KD

Activation-based KD forms an additional regularization loss through all

(or a subset of) activation values to form the loss.

Lkd =
L∑

i=1

g(y i
act , f

i
act(X )) (10)

where L is the total number of layers.
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Attention-map for Activation-based KD

As we have explained, the design of the regularization loss g can be fairly

complex. Let’s consider a layer’s activation functions xact ∈ RC×H×W .

We define an attention map as a function p : RC×H×W → RH×W . For

instance, this can be:

• Sum of absolute values: p(x) =
∑C

i=1 |xi |
• Sum of absolute values with power m: p(x) =

∑C
i=1 |xi |m
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Attention-map for Activation-based KD

Performant networks tend to have similar attention maps
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Attention-map for Activation-based KD

Performant networks tend to have similar attention maps

L = LCE +
β

2

L∑
i=1

‖ Q i
S

‖Q i
S‖2
− Q i

T

‖Q i
T‖2
‖p (11)

where Q i
S and Q i

T are vectorized version of activation values for the

student and the teacher networks respectively.

The whole β
2

∑L
i=1 ‖

Q i
S

‖Q i
S‖2
− Q i

T

‖Q i
T‖2
‖p part is an additional loss term that

encourages the student network to have the same ‘attention map’ as the

teacher network.
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Chaining Compression

Algorithms



Chaining Compression Techniques

In fact, many of the compression techniques are working on fairly

orthogonal spaces. A great idea to harvesting more compression rate is

chaining a bunch of them together.
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Chaining Compression Techniques

Multiplying gains when you chain a bunch of compression algorithms

together The following example is what I have tried to run fine-grained

pruning and fixed-point quantizations on a CIFAR10 network. The

CIFAR10 network is a variant of VGG.

Method Bit-width Density Compression rate Top-1/top-5 accuracy

baseline 32 100.00% - 91.37%/99.67%

fixed-point (fixed) 4 100.00% 8.00× 89.64%/99.74%

dynamic fixed-point (DFP) 4 100.00% 8.00× 90.63%/99.68%

fine-grained pruning (pruned) 32 15.65% 6.39× 91.12%/99.70%

pruned + fixed 6 15.65% 33.92× 90.59%/99.68%

pruned + DFP 6 15.65% 33.92× 91.04%/99.70%
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Deep Compression

The best quantization method pushes the compression rate to 8× with

less than 1% loss in accuracy.

Adding the pruning optimization on top of the quantization, we push the

compression rate to 33.92× with a even better accuracy.

NB: sometimes pruning serves as a regularization so you might have a

better accuracy!
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Distinguish between Lossy and Lossless Compressions

• Quantization – Lossy Compression

• Pruning – Lossy Compression

• Decoding – Lossless Compression
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Compressio and Re-training

• Quantization – Lossy Compression

• Pruning – Lossy Compression

• Huffman Decoding – Lossless Compression

Re-training becomes a critical operation to increase the performance

degradation from lossy compression.

However, lossless compressions do not cause any performance

degradation and thus has no need to use re-training.

Chaining these optimizations gives multiplying gains! Many of the

compressions are (partially) orthogonal.
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Special harware support

This however normally means you need special hardware support!

• Sparse Matrix Multiplication supoort

• Decoder and encoder support for Huffman decoding

• Low-precision multiplication units
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Quantization with KD

KD, as a training framework, can also be used in conjunction with

compression algorithms.
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Quantization with KD

Teacher network: full-precision network

Student network: low-precision network
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Quantization with KD

Activation loss, the first distillation loss: knowledge in the embedding

layer and the outputs of all Transformer layers of the full-precision teacher

model to the quantized student model, by the mean squared error (MSE).
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Quantization with KD

Activation loss, the second distillation loss: the loss between teacher

model’s attention scores from all attention heads in all layers and the

student model’s attention scores.
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Quantization with KD

Logits-based loss, the third distillation loss: the loss between teacher

model’s logits and the student model’s logits.
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Quantization with KD

With the KD-loss, TinyBERT generally has a better accuracy given the

same quantization budget.
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