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Introduction



Computation graphs and operator-level optimizations

We have looked a few algorithmic optimizations, and they are mainly

‘lossy’ optimizations. Most of them rely on the redundancy of NNs and

also the recovering power of SGDs.

On the compiler stack, we also have the opportunity to issue a range of

classic lossless optimizations.

• Graph-level optimizations, we refer to a computation graph in this

case, an example could be the MaseGraph.

• Operator-level optimizations, how do we perform lower-level

optimization if given hardware information.
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A High-level Overview



A High-level Overview

Grappler is designed for Tensorflow, to optimize the Graph.

This is normally on the middleware level. Grappler takes various

front-end languages (Python, Swift ... C++). The middleware obtains a

Graph and we have to deploy this to various hardware backends.
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A High-level Overview

These optimizations are normally at two levels:

• Graph-level

• Operator-level
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The Computational Graph



Constant folding

Rewrites certain operations in the graph, if we know the values

ahead-of-time.

Constant propagation

Add(c1,Add(x , c2)) => Add(x , c1 + c2)

Operations with neutral & absorbing elements

x ∗ Ones(s) => Identity(x), if shape(x) == output shape
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Graph Operation Fusion

Replaces commonly occurring subgraphs with optimized fused kernels

Examples of patterns fused:

• Conv2D + BiasAdd + Activation

• Conv2D + FusedBatchNorm + Activation

• Conv2D + Squeeze + BiasAdd

• MatMul + BiasAdd + Activation
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Graph Operation Fusion

Fusing ops together provides several performance advantages:

• Completely eliminates the scheduling overhead (great for cheap ops)

• Increases opportunities for ILP, vectorization etc.

• Improves temporal and spatial locality of data access. E.g. MatMul

is computed block-wise and bias and activation function can be

applied while data is still “hot” in cache.
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Graph Operation Rewrites

Rely on heuristics to repack operations on the graph level.
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Graph Operation Rewrites
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Graph Operation Rewrites
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Graph-level Optimizations

Graph level optimizations are normally at a coarse-grained level.

More importantly, most of them have to rely on certain heuristics, for

instance, this could be the re-write rules for fusion strategies.
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The Operator-level Optimizations



Operator-level optimizations

On the graph-level, we care about large operations (more like layers).

On the operator level, this is now closer to the hardware. We typically

prioritize the most compute-intensive tasks, thereby concentrating on

loop manipulations.
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Loop Tiling

The following is an example of matrix vector multiplication.

There are three arrays, each with 100 elements. The code does not

partition the arrays into smaller sizes.

1 int i, j, a[100][100], b[100], c[100];

2 int n = 100;

3 for (i = 0; i < n; i++) {

4 c[i] = 0;

5 for (j = 0; j < n; j++) {

6 c[i] = c[i] + a[i][j] * b[j];

7 }

8 }
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Loop Tiling

After loop tiling is applied using 2 * 2 blocks, the code looks like:

1 int i, j, x, y, a[100][100], b[100], c[100];

2 int n = 100;

3 for (i = 0; i < n; i += 2) {

4 c[i] = 0;

5 c[i + 1] = 0;

6 for (j = 0; j < n; j += 2) {

7 for (x = i; x < min(i + 2, n); x++) {

8 for (y = j; y < min(j + 2, n); y++) {

9 c[x] = c[x] + a[x][y] * b[y];

10 }

11 }

12 }

13 }
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Loop Tiling

Loop tiling

• Tiling partitions a loop’s iteration space into smaller chunks or

blocks

• This ensures data used in a loop stays in the cache until it is reused.

• This leads to partitioning of a large array into smaller blocks, thus

fitting accessed array elements into cache size, enhancing cache

reuse and eliminating cache size requirements.
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Loop Unrolling

1 int x;

2 for (x = 0; x < 100; x++)

3 {

4 dosomething(x);

5 }

6

7 for (x = 0; x < 100; x += 5 )

8 {

9 dosomething(x);

10 dosomething(x + 1);

11 dosomething(x + 2);

12 dosomething(x + 3);

13 dosomething(x + 4);

14 }

16



Loop Unrolling

The amount of unrolling is normally associated with the underlying

hardware parallelism.

This looks simple, but can become very complex if we have loop nests. It

becomes more complex if we start to think about it in conjunction with

tiling and other operations.
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Loop Permutation for Data Layout Optimization

What is Data Layout?

Data layout optimization converts data into one that can use better

internal data layouts for execution on the target hardware.

For instance, a DL accelerator might exploit 4 × 4 matrix operations,

requiring data to be tiled into 4 × 4 chunks to optimize for access

locality. A good data layout

• Improves locality

• Reduces the number of off-chip memory accesses

• May reduce Ops (eg. unnecessary transpose)

This is normally achieved by loop permutation.
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More on Loop Optimizations

• Loop Fusion/Fission: break large loop to smaller ones or fuse small

loops, normally for locality.

• Loop Skewing (Polyhedral Optimization): Normally for deep nested

loops, re-arrange loops to achieve a better access pattern.

• Loop Splitting: attempts to simplify a loop or eliminate

dependencies by breaking it into multiple loops which have the same

bodies but iterate over different portions of the index range.

• and more...

19



Why we doing this?

Loop-level manipulation is very complex, however, the core idea is to

push the performance to the optimal point!

• Improve locality for memory-bound scenarios

• Improve parallelism for compute-bound scenarios
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Arithmetic Operator Optimization

• Arithmetic simplification

• Hoisting: Add(x ∗ a, x ∗ bx ∗ c) = x ∗ Add(a, b, c)
• Node reduction: x + x + x = 3x , one op instead of two ops

• Broadcast minimization:

(matrix1 + scalar1) + (matrix2 + scalar2) =>

(matrix1 + matrix2) + (scalar1 + scalar2)

• Better use of intrinsics

Matmul(Transpose(x), y) => Matmul(x , y , transposex = True)
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Memory Operator Optimization

• Swap-in and Swap-out Optimizations: actively estimate memory

usage and swap in/out idle data to host memory

• Recomputation optimization: if moving in/out the data is slow, why

not just re-compute that value.
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Summary

• The Computational Graph

• Constant folding

• Graph operation fusion

• Graph operation rewrites

• The Operator-level Graph

• Loop tiling

• Loop unrolling

• Loop permutation

• Arithmetic operator optimization

• Memory operator optimization
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