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Introduction



Introduction - MASE

MASE (Machine Learning Accelerator System Exploration) is an

open-source project that aims to automate the exploration of ML system

software and hardware.

https://github.com/DeepWok/mase
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Introduction - Why re-inventing the wheel?
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Introduction - Why re-inventing the wheel?

• Pytorch, Tensorflow (high-level python tools), algorithmic

exploration, mapping mostly to CPUs and GPUs

• MLIR, TVM, compiler tools, map pre-defined network to various

hardware targets

• MLIR-Circt, scheduling based HLS on top of MLIR
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Introduction - Why re-inventing the wheel?

We are interested in combine these in a unified abstraction – a new

graph-based MASE Intermediate Representation (IR)
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Introduction - Passes

A pass (can be either a transformation or an analysis), takes in the IR of

the model, and returns the IR again

1 # pass takes a MaseGraph (the IR) and corresponding

pass-related arguments↪→

2 # graph: MaseGraph, pass_args: dict

3 def pass_name(graph, pass_args):

4 ...

5 # return a MaseGraph (the IR) again, and a

dictionary for additional data↪→

6 # graph: MaseGraph, info: dict

7 return graph, info

8
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Introduction - Overview

• Graph-level IR system and passes (we will cover in labs)

• Module-level passes (code is there)

• The idea of summarizing workloads into a set of IRs, and apply

passes on them is the same as traditional compiler systems (eg.

LLVM).
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MaseGraph IR



MASEGraph IR

Core idea: we represent Neural Networks as a computation graph, where

nodes are computation blocks and edges are data.
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MASEGraph IR - Visualization

Core idea: we represent Neural Networks as a computation DAG

(Directed Acyclic Graph), where nodes are computation blocks and edges

are data.
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MASEGraph IR - Visualization

This can be very complex, notice the transformer layer is represented at a

coarse granularity.
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MASEGraph IR - Implementation

Mase takes a torch.fx graph representation of a model and translates it

into a customised representation (Mase graph IR).

The MaseGraph IR is a lot more complex than the previous visualization.

Below is a single convolution layer. To reproduce, run python

machop/test/others/plot graph.py.
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MASEGraph IR - Implementation

The manipulation of the model requires both access to the torch fx graph

and modules, you will understand this better after having the labs.

The definition can be found at

mase/machop/chop/ir/graph/mase graph.py

1 class MaseGraph:

2 def __init__(self, model, cf_args) -> None:

3 ...

4

5 def fx_graph(self):

6 return self.model.graph

7

8 def modules(self):

9 return dict(self.model.named_modules())

10
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MASEGraph IR - Types

IR types are for nodes in the MaseGraph

• placeholder: for inputs

• module: for pytorch nn.Module

• module related func: some functions have the same functionality as

a module, for instance, torch.nn.Conv2d (Module) and

torch.nn.functional.conv2d are the same.

• builtin func: what fx considers as builtin funcs

• implicit func: all other funcs that are not builtin

• get attr: normally used for retrieving a parameter

• output: for outputs

A complete definitions of these and also supported nodes are in

mase/machop/chop/passes/graph/common.py
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Metadata and Analysis Passes



MASEMetadata - why?

IR only carries type information and node relations.

We normally need more information to perform complex operations, such

information is called metadata and they are added to each node.

1 class MaseMetadata:

2 ...

3

How do we add such a class to the MaseGraph IR?
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Init Metadata Pass

Implemented as a pass!

Traverse each node and append the MaseMetadata object to each node.

mase-tools/machop/chop/passes/graph/analysis/init metadata.py

1 def init_metadata_analysis_pass(graph, pass_args={}):

2 for node in graph.fx_graph.nodes:

3 node.meta["mase"] = MaseMetadata(node=node,

model=graph.model)↪→

4 return graph, {}

5
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Analysis Passes

Optimizations or information gathering are implemented as Passes that

traverse the whole or some portion of a network to either collect

information or transform the network.

Generally, analysis passes are used for collect extra information of the

network for later transformation passes.

• add common metadata

• add software metadata

• add hardware metadata

Passes are summarised at

mase-tools/machop/chop/passes/graph/ init .py
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add common metadata Passes

Add a bunch of commonly used metadata to each node. This includes

• mase type: (module related func, implicit func ...)

• mase op: (linear, relu ...)

• args: (name, type, shape and precision for all input arguments)

• results: (name, type, shape and precision for all all results)
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add common metadata Passes
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add software metadata and add hardware metadata Passes

Similarly, add software metadata and add hardware metadata passes do

the same thing but add metadata for software and hardware respectively.

1 "common": {

2 "mase_type": "module_related_func",

3 "mase_op": "linear",

4 "args": {

5 "data_in_0": {"shape": [1, 784], "type": "float",

"precision": [32],},↪→

6 "weight": {"type": "float", "precision": [32], "shape":

[784, 784]},↪→

7 "bias": {"type": "float", "precision": [32], "shape":

[784]}},↪→

8 "results": {"data_out_0": {"type": "float", "precision":

[32], "shape": [1, 784], "torch_dtype":

torch.float32,}, },},

↪→

↪→

9 "software": {}, "hardware": {},
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Transform Passes

Transform passes take a MaseGraph (or a network) as an input and

perform certain modifications to it as an input and perform certain

modifications to it.

I will use the quantization transform pass as an example.

chop/passes/graph/transforms/quantize/quantize.py
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Quantize Transform Passes

1 def quantize_transform_pass(graph, pass_args=None):

2 by = pass_args.pop("by")

3 match by:

4 case "type":

5 graph = graph_iterator_quantize_by_type(graph,

pass_args)↪→

6 case "name":

7 graph = graph_iterator_quantize_by_name(graph,

pass_args)↪→

8 case "regex_name":

9 graph = graph_iterator_quantize_by_regex_name(graph,

pass_args)↪→

10 case _:

11 raise ValueError(f'Unsupported quantize "by": {by}')

12 return graph, {}
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Quantize Transform Passes

• Transformation is also implemented as a traverse to the MaseGraph.

• You can use pass arguments to control your logic.

22



Quantize Transform Passes: replacing a node

1 def graph_iterator_quantize_by_name(graph, config):

2 ...

3 for node in graph.fx_graph.nodes:

4 ...

5 ori_module = get_node_actual_target(node)

6 # create the new quantized module

7 new_module = create_new_module(...)

8 # take the parent node based on the graph hierarchy

9 parent_name, name = get_parent_name(node.target)

10 setattr(graph.modules[parent_name], name, new_module)

11 # update meta data accordingly

12 update_quant_meta_param(node, node_config,

get_mase_op(node))↪→

13

23



What’s next?

• You will go through the quantization pass and learn MASE in labs.

• Lecture 3 - 4 will cover more on MASE and the labs.
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