
An Introduction to Practical 2

Lecture 4 for Advanced Deep Learning Systems

Aaron Zhao, Imperial College London, a.zhao@imperial.ac.uk

Table of contents

1. Introduction

2. Lab 3: A quantization search using MASE

3. Lab 4 (software stream): A toy Network Architecture Search (NAS)

using MASE

4. Lab 4 (hardware stream): Writing and testing a fully-connected layer

in SystemVerilog

1

Introduction

Introduction

Two labs are in Practical 2

• Lab 3: A quantization search using MASE.

• Lab 4 (software stream): A toy Network Architecture Search (NAS)

using MASE.

• Lab 4 (hardware stream): Writing and testing a fully-connected layer

in SystemVerilog.

Deliverable

• A Markdown file: with all answers (plots, tables ...) of the questions

and optional questions.

• Corresponding code in your forked repository.

Examination (15%)

• Submission requires the Markdown files only.

• Lab oral to check on your code and Q&A.

2

Lab 3: A quantization search

using MASE

Problem setup

We allow multi-precision, this means different layers can use a different

precision setup. This is also know mixed-quantization.

We would like to have at most X% accuracy degradation, and focus on

quantizing the computationally heavy layers (eg. linear, convolution).

• If the network has N layers.

• Each layer has M quantization choices.

• NM search space.

3

Classic Approach

1 class JSC_Tiny(nn.Module):

2 def __init__(self, info, qparam):

3 super(JSC_Tiny, self).__init__()

4 self.seq_blocks = nn.Sequential(

5 # 1st LogicNets Layer

6 nn.BatchNorm1d(16), # batch norm layer

7 QuantizedLinear(16, 5, qparam), # linear layer

8)

9

10 def forward(self, x):

11 return self.seq_blocks(x)

12 ...

13 for qparam in search_space:

14 evaluate(model(info, qparam))

15 ...

4

MASE

The classic method is not very scalable because it interleaves network

definitions with the quantization optimization, what if

• We have a new network

• Or we have a new optimization

• Or we want to use this optimization in conjunction with other

optimizations

1 for i, config in enumerate(search_spaces):

2 mg = quantize_transform_pass(ori_mg, config)

3 evaluate(mg)

5

MASEGraph Analysis Passes

1 mg = init_metadata_analysis_pass(mg, None)

2 mg = add_common_metadata_analysis_pass(mg, {"dummy_in":

dummy_in})↪→

3 mg = add_software_metadata_analysis_pass(mg, None)

‘add common metadata analysis pass’ uses the dummy input.

We have explained before that the fx graph is a skeleton, it records

minimal information, so how do we actually fetch input and model

information from this skeleton to run an actual inference?

6

Analysis Pass Deepdive

The MaseGraph implementation largely relies on the torch fx graphs.

When traversing an fx graph, you actually need two components, that are

the MASEGraph.fx graph itself and MASEGraph.modules. One can

imagine the fx graph is a skeleton, it records minimal information.

• node.op

• node.target

• node.name

• node.args

• node.kwargs

7

The placeholder op

node.op is ”placeholder”

• node.name is set to the variable name for the input

• node.target not used

• node.args not used

• node.kwargs not used

8

The call function and call module op

node.op is ”call function”

• node.name is function name

• node.target is the actual function

• node.args is the function arguments

• node.kwargs is the kwargs

node.op is ”call module”

• node.name is module name

• node.target is also the module name

• node.args is the function arguments

• node.kwargs is the kwargs

9

Tracing the information for these ops

1 for node in graph.fx_graph.nodes:

2 args, kwargs = None, None

3 if node.op == "placeholder":

4 result = dummy_in[node.name]

5 ...

6 elif node.op == "call_function":

7 args = load_arg(node.args, env)

8 kwargs = load_arg(node.kwargs, env)

9 result = node.target(*args, **kwargs)

10 elif node.op == "call_module":

11 args = load_arg(node.args, env)

12 kwargs = load_arg(node.kwargs, env)

13 result = graph.modules[node.target](*args, **kwargs)

14 ...

Full code available in the implementation of add common metadata pass.

10

Lab 4 (software stream): A toy

Network Architecture Search

(NAS) using MASE

What is Network Architecture Search?

We want to pick the optimal architecture a ∈ A from a set of

architectures A.

At the same time, we want to pick the optimal parameters w∗(a) for the

architecture a.

mina∈ALval(w
∗(a), a)

s.t.w∗(a) = argminw (Ltrain(w , a))
(1)

11

What is Network Architecture Search?

12

The idea of multiplied channels

1 class JSC_Three_Linear_Layers(nn.Module):

2 def __init__(self):

3 super(JSC_Three_Linear_Layers, self).__init__()

4 self.seq_blocks = nn.Sequential(

5 nn.BatchNorm1d(16), # 0

6 nn.ReLU(16), # 1

7 nn.Linear(16, 16), # linear seq_2

8 nn.ReLU(16), # 3

9 nn.Linear(16, 16), # linear seq_4

10 nn.ReLU(16), # 5

11 nn.Linear(16, 5), # linear seq_6

12 nn.ReLU(5), # 7

13)

14

15 def forward(self, x):

16 return self.seq_blocks(x)

13

The idea of multiplied channels

1 class JSC_Three_Linear_Layers(nn.Module):

2 def __init__(self):

3 super(JSC_Three_Linear_Layers, self).__init__()

4 self.seq_blocks = nn.Sequential(

5 nn.BatchNorm1d(16),

6 nn.ReLU(16),

7 nn.Linear(16, 32), # output scaled by 2

8 nn.ReLU(32), # scaled by 2

9 nn.Linear(32, 64), # input scaled by 2 but

output scaled by 4↪→

10 nn.ReLU(64), # scaled by 4

11 nn.Linear(64, 5), # scaled by 4

12 nn.ReLU(5),

13)

14

15 def forward(self, x):

16 return self.seq_blocks(x)
14

The idea of multiplied channels

• The idea is to scale the input and output channels of the linear layer

by a constant factor.

• In this lab, you will have to standardize this idea and implement it as

a Transformation pass.

• Consecutive linear layers must be scaled by the same factor.

• Search through all the possible factors (brute force and Bayesian).

15

Lab 4 (hardware stream):

Writing and testing a

fully-connected layer in

SystemVerilog

The goal of Lab4

Automatically generate a fully-connected layer in SystemVerilog, and test

it using Cocotb.

Cocotb is a COroutine based COsimulation TestBench environment for

verifying VHDL and SystemVerilog RTL using Python.

We use the Cocotb with Verilator backend.

16

Cocotb and Verilator

Cocotb: direct testing in Python, no need to write a testbench in

SystemVerilog.

Verilator: ‘up-compiles’ SystemVerilog into multithreaded C++,

lightening fast, no need to open vendor tools when doing behavior level

testing.

17

EmitVerilog Pass in MASE

• Classic source to source generation

• Directly generate SystemVerilog from MaseGraph

1 from chop.passes.graph.transforms import (

2 emit_verilog_top_transform_pass,

3 emit_internal_rtl_transform_pass,

4 emit_bram_transform_pass,

5 emit_verilog_tb_transform_pass,

6)

18

EmitVerilog Pass in MASE

19

EmitVerilog generates dataflow designs

• Generate functional elements (RTL)

• Generate memory components (BRAM)

• Dataflow accelerator design without making use of the DRAM

20

Dataflow accelerator designs

• A homogeneous Big Compute Core (normal design, ASIC)

• A series of tailored small compute cores (dataflow design, FPGA)

21

Dataflow accelerator design

Advantages

• No complex control flow (minimal or no ISA design)

• (Almost) no waste of resources

• (Almost) fixed memory access pattern

• Deep pipeline

22

Dataflow accelerator design

Disadvantages

• Re-program hardware for each new network

• Scalability issues

• If DRAM is utilized, hard to achieve great performance by filling up

all pipeline stages

23

The compute pattern

Simple blocking

1 # Breaking the vector into blocks

2 for i in range(0, n, block_size):

3 # calculate end val considering the last block which

can be smaller than block_size↪→

4 end_val_i = min(i + block_size, n)

5

6 # Retrieving block of a

7 sub_a = a[i : end_val_i]

8 # Retrieving corresponding elements from vector

9 sub_b = b[i : end_val_i]

10

11 # multiplication, actual hardware dimension is

(block_size, 1)↪→

12 result += np.dot(sub_a, sub_b)

24

The compute pattern

• N >> M, this gives you a chance to do a trade-off between

resources and latency simply by changing M.

• Blocking can happen in a 2D shape!

25

2D Blocking

• Parallel Multipliers (M2).

• M Adder Trees (log2(M)).

• M Accumulators (M).

26

	Introduction
	Lab 3: A quantization search using MASE
	Lab 4 (software stream): A toy Network Architecture Search (NAS) using MASE
	Lab 4 (hardware stream): Writing and testing a fully-connected layer in SystemVerilog

