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Introduction



Introduction - Outline

Using the basic networks and building blocks we learned in the previous

lecture, we will look at how researchers have constructed

• LLAMA2

• CLIP

• SAM

• Whisper

GPT’s training detail is not open-sourced, and it is (or should be)

somehow very similar to the OPT and LLaMA models that we have

looked at.
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LLaMA2



LLaMA2

LLaMA2 normally refers to the LLaMA2 model, LLaMA2-Chat refers to

the chatbot.

What is the difference?

• LLaMA2 is fully trained with only the pre-training data.

• LLaMA2-Chat requires additional treatment such as an iterative

refinement using Reinforcement Learning with Human Feedback

(RLHF).

This is almost the same for all state-of-the-art LLMs! There are

additional steps required to make them a good chatbot!

3



LLaMA2 pre-training details

Architecture details

• Standard Transformer architecture

• Pre-normalization with RMSNorm

• Rotary positional embedding (RoPE)

• Grouped-query attention (GQA), will cover in more detail in the

next lecture

Training details

• 2 trillion tokens training data!

• AdamW optimizer

• Cosine learning rate scheduler with warmup
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Normalization

Pre- and Post-Normalization

Post-Normalization

x = Norm(x + f (x)) (1)

Pre-Normalization

x = x + f (Norm(x)) (2)
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LayerNorm and RMSNorm

LayerNorm: y = x−µ
σ α

µ is the mean and σ is the std, α is a learnable gain parameter.

RMSNorm: y = x
RMS(x)α

RMS(x) =
√

1
n

∑n−1
i=0 x2i

RMSNorm can be seen as a simplified LayerNorm, and also more efficient.

6



Positional Embedding

The original input is a sequence of word embedding Xembed ∈ RN×D .

Positional embedding Xpos ∈ RN , that is added to the word embedding

to provide X = Xembed + Xpos .

Without positional embedding, the model cannot tell the difference

between “I am a robot” and ”am I a robot”, because we take these

inputs in parallel.
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Rotary Positional Embedding (RoPE)

• Absolute positional embedding: sinusoidal functions (no length

constraints)

• Relative positional embedding: additional components added to the

Q, K components, such as T5, slow at large sequences, no KV

caching, not commonly used in large models.

• Rotary positional embedding (RoPE): think about angular changes
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Rotary Positional Embedding (RoPE)
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Contrastive Language–Image

Pre-training (CLIP)



CLIP

Classic computer vision systems (such as ResNets) have the following

disadvantages:

• Trained on labelled data.

• Normally predict a fixed set of predetermined object categories

• New labelled data is needed if you want to specify any other visual

concept

Can we learn directly from raw text about images and the images?
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CLIP

The core idea is to use natural language as supervision.

Contrastive representation learning works by predicting which of the

N × N possible (image, text) pairings across a batch actually occurred.

This forces learning in a multi-modal embedding space by jointly training

an image encoder and text encoder to

• maximize the cosine similarity of the image and text embeddings of

the N real pairs in the batch

• minimize the cosine similarity of the embeddings of the N2 − N

incorrect pairings.
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CLIP
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CLIP - The Actual Code

1 # extract feature representations of each modality

2 I_f = image_encoder(I) #[n, d_i]

3 T_f = text_encoder(T) #[n, d_t]

4 # joint multimodal embedding [n, d_e]

5 I_e = l2_normalize(np.dot(I_f, W_i), axis=1)

6 T_e = l2_normalize(np.dot(T_f, W_t), axis=1)

7 # scaled pairwise cosine similarities [n, n]

8 logits = np.dot(I_e, T_e.T) * np.exp(t)

9 # symmetric loss function

10 labels = np.arange(n)

11 loss_i = cross_entropy_loss(logits, labels, axis=0)

12 loss_t = cross_entropy_loss(logits, labels, axis=1)

13 loss = (loss_i + loss_t)/2
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CLIP - Finetuning

Although in the original CLIP paper, they have presented a zero-shot

prediction method for image classification.

We normally use the CLIP image encoder as a pre-trained model, connect

it with a classifier to perform classification.

CLIP (contrastive learning) opened the door for building vision

foundation models.
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Segment Anything Model (SAM)



Segment Anything

A foundation model for image segmentation

• A large-scale dataset on the task: 1+ billon masks and 11 million

images

• An Image Encoder: ViT model

• A Prompt Encoder

• Sparse prompts (points, text): points are positional encoded using

random spatial frequencies, text using CLIP.

• Dense prompts (masks): feed into convolution to extract an

embedding.

• A Mask Decoder: maps the image embedding, prompt embeddings,

and an output token to a mask. We focus on this part.
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Segment Anything
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Panoptic segmentation

Image segmentation a computer vision and image processing technique

that involves grouping or labeling similar regions or segments in an image

on a pixel level.

• Semantic segmentation: Segments amorphous regions (or repeating

patterns) of similar material, which is uncountable (e.g., road, sky,

and grass).

• Instance segmentation: Segments countable objects in an image

(e.g., people, flowers, birds, animals, etc.).

• Panoptic segmentation: Combines both.
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Panoptic segmentation

Figure 1: Semantic Segmentation

Figure 2: Instance Segmentation

Figure 3: Panoptic Segmentation 18



SAM Model Architecture

Image Encoder

Prompt Encoder

Mask Decoder
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Image Encoder in SAM

Original Image in shape of 1024× 1024

Pretrained Masked AutoEncoder

Transform to embedding 64× 64× 256
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Prompt Encoder in SAM

• Points and Bounding Box: positional encoding with trained

embeddings

• Language inputs: CLIP model
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Mask Decoder

• Self-attention (prompt tokens and output tokens)

• Cross-attention (prompt with image query): update prompt using

contextual information from images.

• Cross-attention (image with prompt query): update image

embedding using contextual information from prompts.
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Whisper



Speech recognition

Speech recognition is a task of converting spoken language to text. It

involves recognizing the words spoken in an audio recording and

transcribing them into a written format (text).
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WAV2Vec

The ‘classic’ speech recognition network

• An encoder network: takes audio signal as inputs and project them

to an embedding space using Convolutions

• A context network: combines multiple time-steps of the encoder to

obtain contextualized representations also using Convolutions.

• Limited context length.

24



Whisper Architecture
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log-MelSepectrum

• Transform signal from the time domain to frequency domain

• Studies have shown that humans do not perceive frequencies on a

linear scale. We are better at detecting differences in lower

frequencies than higher frequencies.

• we can easily tell the difference between 500 and 1000 Hz

• but we will hardly be able to tell a difference between 10,000 and

10,500 Hz

• In 1937, Stevens, Volkmann, and Newmann proposed a unit of pitch

such that equal distances in pitch sounded equally distant to the

listener. This is called the mel scale.

• Perform a unit conversion to the log-mel scale

• All audio is re-sampled to 16,000 Hz, and an 80-channel

log-magnitude Mel spectrogram representation is computed on

25-millisecond windows with a stride of 10 milliseconds.
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Whisper Architecture

• Conv1D and GELU to transform very long spectrogram input into

valid embedding.

• Classic Transformer encoder-decoder architecture with self- and

cross-attentions.

• Sinusoidal positional embedding.

• Indicate the beginning of prediction with a startoftranscript token
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Whisper Architecture
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log-MelSepectrum

• Transform signal from the time domain to frequency domain

• Studies have shown that humans do not perceive frequencies on a

linear scale. We are better at detecting differences in lower

frequencies than higher frequencies.

• we can easily tell the difference between 500 and 1000 Hz

• but we will hardly be able to tell a difference between 10,000 and

10,500 Hz

• In 1937, Stevens, Volkmann, and Newmann proposed a unit of pitch

such that equal distances in pitch sounded equally distant to the

listener. This is called the mel scale.

• Perform a unit conversion to the log-mel scale

• All audio is re-sampled to 16,000 Hz, and an 80-channel

log-magnitude Mel spectrogram representation is computed on

25-millisecond windows with a stride of 10 milliseconds.
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Summary

• Introduced three new tasks:

• Unsupervised learning (contrastive learning)

• Image segmentation

• Speech Recognition

• A few model architectures (CLIP, LLaMA2, SAM, Whisper)

• Reuse classic and powerful building blocks (eg. self-attention, image

encoder)
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