
Automated Machine Learning – An

Introduction to Network Architecture Search

Lecture 8 for Advanced Deep Learning Systems

Aaron Zhao, Imperial College London, a.zhao@imperial.ac.uk

Table of contents

1. Introduction

2. Search Space

3. Search Strategies

1

Introduction

Introduction

During the last lecture, we explored optimizing our network through

informed manual adjustments. Today, we’ll delve into Automated

Machine Learning and the process of Network Architecture Search.

2

Introduction - Automated Machine Learning

The complete AutoML pipeline consists of:

• Data preparation and automated data cleaning

• Feature Engineering

• Model selection or Network Architecture Search

• Hyperparameter tuning ...

3

Introduction - Network Architecture Search

Core idea: Can we design the best network architecture purely from

observing the data?

We want to pick the optimal architecture a ∈ A from a set of

architectures A.

At the same time, we want to pick the optimal parameters w∗(a) for the

architecture a.

mina∈ALval(w
∗(a), a)

s.t.w∗(a) = argminw (Ltrain(w , a))
(1)

4

Search Space

What is a search space?

We normally have to search through a given set of architectures A, which

is known as the search space.

• Global search space

• Modular search space

• Combined search space

5

Global search space

A global search space considers directly all possible elements (search

options) in the DAG (Directed Acyclic Graph): this is an extremely large

search space, not even tractable.
6

Modular search space

• Search a critical component in the search space, and then duplicate

that component based on heuristics (DARTS).

• Template and backbone template with heuristics, search for the

design options in the backbone (MobileNet-V3).

7

The DARTS search space

• 6-node DAG as a Cell

• two input nodes

• one output node

• four intermediate data nodes

• Nodes are connected by an operation

• conv3x3

• conv1x1

• skip, relu, sigmoid, tanh and so on.

• roughly 109 options

8

The DARTS search space

• Normal Cell (no resolution change)

• Reduction Cell (resolution changes with striding/pooling)

9

The DARTS search space

• Searched on CIFAR10 with one normal and one reduction cell.

• There exists an approximation/belief that architectures learned on

CIFAR10 are generally transferrable to other image tasks!

• Stack the searched cell multiple times to build bigger networks on

ImageNet.

• There exists a heuristics-defined stacking pattern! Figure is from

ENAS but DARTS does the same thing.

10

Combined search space

• Micro-architecture design: the design of a single cell, through the

modular search space.

• Macro-architecture design: how these cells should be connected,

through the global search space.

• The decomposition makes the total search space smaller and more

tractable.

11

Combined search space

Combined search space

Micro-architecture

Macro-architecture

12

Search Strategies

What is a search strategy?

The core-algorithm used to conduct the search.

• Reinforcement learning

• Gradient-based optimization

• Evolutionary Algorithm

• Performance estimator

13

Reinforcement Learning based NAS (NASNet)

A controller, parameterized by θc performs a list of actions

(a0, a1...aT−1) to design the architecture of a child network.

The child network achieves an accuracy R on a held-out validation

dataset.

Concretely, the controller is optimizing a reward:

J(θc) = EP({a0,...,aT−1},θc)[R] (2)

14

Reinforcement Learning based NAS (NASNet)

The reward signal R is non-differentiable, so we use a policy gradient to

iteratively update θc

J(θc) =
1

M

M−1∑
k=0

T−1∑
t=0

logP(at |{at−1...a0}; θc)R (3)

Where M is the number of different architectures that the controller

samples in one batch and T is the number of hyperparameters our

controller has to predict to design a neural network architecture.

This is slightly different from standard RL setup since there is only

basically two states (start and finish) in the trajectory.

It requires a full-training run to obtain R, so this is very expensive!

15

Reinforcement Learning based NAS (NASNet)

16

Gradient-based NAS (DARTs)

The problem with RL-based NAS is that it is hard for the controller to

receive gradients that relates to the child network accuracy.

But what if we can make the operators differentiable?

17

Gradient-based NAS (DARTs)

We associate each operator with a trainable parameter:

Let O be a set of candidate operators (eg. convolution, max pool ...), To

make a continuous search space, one can relax the discrete categorical

distribution:

ō(i,j)(x) =
∑
o∈O

exp(α
(i,j)
o)∑

o′∈O exp(α
(i,j)
o′)

o(x) (4)

The operation mixing weights for a pair of nodes (i , j) are parameterized

by a vector α(i , j) of dimension |O|.

Translate this to words: weighting each operator using trainable α values.

18

Gradient-based NAS (DARTs)

• Update architecture α by descending

∇αLval(w − ξ∇wLtrain(w , α), α), ξ is zero for first order

optimization)

• Update weights w by descending ∇wLtrain(w , α)

• Derive the final architecture based on the learned α.

Dual-level optimization using SGD.

19

Gradient-based NAS (DARTs)

Significant time reduction, since now we run search on the cell-based

space only once! There is now no need for evaluating each child network

20

Evolutionary Algorithm (OFA)

Gradient-based methods suffer from the following problems

• Large VRAM usage (Single-path method)

• Is the ranking on a proxy dataset reliable?

• Gradient interference (PC-DARTs)

• No awareness about the deployment device and scenarios

21

Evolutionary Algorithm (OFA)

What if we train a supernet, and subsample it?

22

Evolutionary Algorithm (OFA)

Design a large supernet that supports sub-sampling in various dimensions

• Kernels

• Channels

• Layers

23

Evolutionary Algorithm (OFA)

Then use an evolutionary algorithm to traverse the whole search space.

• Initialization and Evaluation: At the start, generate a random

population of individuals, and evaluate their performance

• Selection: Individuals are selected based on their fitness scores.

• Crossover: Selected individuals pair and exchange parts of their

structure, creating a new individual called offspring. This process is

also known as recombination or mating.

• Mutation: Offspring are altered randomly to introduce variability in

the population. This prevents the genetic algorithm from stagnating

at local optima.

• Replacement: The population is updated with the new offspring,

usually replacing the least fit individuals. The algorithm then goes

back to the evaluation step, creating a loop.

24

Evolutionary Algorithm (OFA)

Do the search with different hardware targets, use the latency and

accuracy to build a fitness score

25

Performance Predictor (Speedy Performance Estimator)

All previous methods require training of one or more networks. Can we

predict the performance without or with minimal training?

• Learning curve extrapolation: extrapolating the validation accuracy

learning curve via a parameteric model.

• Zero-cost proxies: assessing the generalizability of an architecture

with a single forward pass of a single minibatch of data

• Subset selection: Training the architecture on a subset of the data

26

Performance Predictor (Speedy Performance Estimator)

An example performance predictor can be the following: Let L denote a

loss function, fθ(x) the output of a neural network f with input x and

parameters θ, and let θt,i denote the parameters of the network after t

epochs and i minibatches of SGD.

After training the network for T epochs, we sum the training losses

collected so far to get the following Training Speed Estimate (TSE)

TSE =
T∑
t=1

[
1

B

B∑
1

L(fθt,i (xi),yi)] (5)

The idea is then use this for evaluating the sub-networks, since it gets a

better rank correlation performance usually.

27

Performance Predictor (NASWOT)

Or you can simply take a number of networks and evaluate all of them

using these low-fidelity proxies!

28

Is This A Solved Problem?

Well, Yes and No

• Search spaces are normally manually defined!

• Low-fidelity methods normally work at small search spaces.

• Many of the search methods actually overfit to the search space!

29

Summary

Search Spaces: Global, Modular and Combined

Search Strategies

• Reinforcement learning

• Gradient-based optimization

• Evolutionary algorithm

• Performance estimators

30

	Introduction
	Search Space
	Search Strategies

