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Introduction



Introduction

During the last lecture, we explored optimizing our network through

informed manual adjustments. Today, we’ll delve into Automated

Machine Learning and the process of Network Architecture Search.
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Introduction - Automated Machine Learning

The complete AutoML pipeline consists of:

• Data preparation and automated data cleaning

• Feature Engineering

• Model selection or Network Architecture Search

• Hyperparameter tuning ...
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Introduction - Network Architecture Search

Core idea: Can we design the best network architecture purely from

observing the data?

We want to pick the optimal architecture a ∈ A from a set of

architectures A.

At the same time, we want to pick the optimal parameters w∗(a) for the

architecture a.

mina∈ALval(w
∗(a), a)

s.t.w∗(a) = argminw (Ltrain(w , a))
(1)
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Search Space



What is a search space?

We normally have to search through a given set of architectures A, which

is known as the search space.

• Global search space

• Modular search space

• Combined search space
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Global search space

A global search space considers directly all possible elements (search

options) in the DAG (Directed Acyclic Graph): this is an extremely large

search space, not even tractable.
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Modular search space

• Search a critical component in the search space, and then duplicate

that component based on heuristics (DARTS).

• Template and backbone template with heuristics, search for the

design options in the backbone (MobileNet-V3).
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The DARTS search space

• 6-node DAG as a Cell

• two input nodes

• one output node

• four intermediate data nodes

• Nodes are connected by an operation

• conv3x3

• conv1x1

• skip, relu, sigmoid, tanh and so on.

• roughly 109 options
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The DARTS search space

• Normal Cell (no resolution change)

• Reduction Cell (resolution changes with striding/pooling)
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The DARTS search space

• Searched on CIFAR10 with one normal and one reduction cell.

• There exists an approximation/belief that architectures learned on

CIFAR10 are generally transferrable to other image tasks!

• Stack the searched cell multiple times to build bigger networks on

ImageNet.

• There exists a heuristics-defined stacking pattern! Figure is from

ENAS but DARTS does the same thing.
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Combined search space

• Micro-architecture design: the design of a single cell, through the

modular search space.

• Macro-architecture design: how these cells should be connected,

through the global search space.

• The decomposition makes the total search space smaller and more

tractable.
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Combined search space

Combined search space

Micro-architecture

Macro-architecture
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Search Strategies



What is a search strategy?

The core-algorithm used to conduct the search.

• Reinforcement learning

• Gradient-based optimization

• Evolutionary Algorithm

• Performance estimator
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Reinforcement Learning based NAS (NASNet)

A controller, parameterized by θc performs a list of actions

(a0, a1...aT−1) to design the architecture of a child network.

The child network achieves an accuracy R on a held-out validation

dataset.

Concretely, the controller is optimizing a reward:

J(θc) = EP({a0,...,aT−1},θc )[R] (2)
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Reinforcement Learning based NAS (NASNet)

The reward signal R is non-differentiable, so we use a policy gradient to

iteratively update θc

J(θc) =
1

M

M−1∑
k=0

T−1∑
t=0

logP(at |{at−1...a0}; θc)R (3)

Where M is the number of different architectures that the controller

samples in one batch and T is the number of hyperparameters our

controller has to predict to design a neural network architecture.

This is slightly different from standard RL setup since there is only

basically two states (start and finish) in the trajectory.

It requires a full-training run to obtain R, so this is very expensive!
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Reinforcement Learning based NAS (NASNet)
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Gradient-based NAS (DARTs)

The problem with RL-based NAS is that it is hard for the controller to

receive gradients that relates to the child network accuracy.

But what if we can make the operators differentiable?
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Gradient-based NAS (DARTs)

We associate each operator with a trainable parameter:

Let O be a set of candidate operators (eg. convolution, max pool ...), To

make a continuous search space, one can relax the discrete categorical

distribution:

ō(i,j)(x) =
∑
o∈O

exp(α
(i,j)
o )∑

o′∈O exp(α
(i,j)
o′ )

o(x) (4)

The operation mixing weights for a pair of nodes (i , j) are parameterized

by a vector α(i , j) of dimension |O|.

Translate this to words: weighting each operator using trainable α values.
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Gradient-based NAS (DARTs)

• Update architecture α by descending

∇αLval(w − ξ∇wLtrain(w , α), α), ξ is zero for first order

optimization)

• Update weights w by descending ∇wLtrain(w , α)

• Derive the final architecture based on the learned α.

Dual-level optimization using SGD.
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Gradient-based NAS (DARTs)

Significant time reduction, since now we run search on the cell-based

space only once! There is now no need for evaluating each child network
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Evolutionary Algorithm (OFA)

Gradient-based methods suffer from the following problems

• Large VRAM usage (Single-path method)

• Is the ranking on a proxy dataset reliable?

• Gradient interference (PC-DARTs)

• No awareness about the deployment device and scenarios
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Evolutionary Algorithm (OFA)

What if we train a supernet, and subsample it?
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Evolutionary Algorithm (OFA)

Design a large supernet that supports sub-sampling in various dimensions

• Kernels

• Channels

• Layers
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Evolutionary Algorithm (OFA)

Then use an evolutionary algorithm to traverse the whole search space.

• Initialization and Evaluation: At the start, generate a random

population of individuals, and evaluate their performance

• Selection: Individuals are selected based on their fitness scores.

• Crossover: Selected individuals pair and exchange parts of their

structure, creating a new individual called offspring. This process is

also known as recombination or mating.

• Mutation: Offspring are altered randomly to introduce variability in

the population. This prevents the genetic algorithm from stagnating

at local optima.

• Replacement: The population is updated with the new offspring,

usually replacing the least fit individuals. The algorithm then goes

back to the evaluation step, creating a loop.
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Evolutionary Algorithm (OFA)

Do the search with different hardware targets, use the latency and

accuracy to build a fitness score
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Performance Predictor (Speedy Performance Estimator)

All previous methods require training of one or more networks. Can we

predict the performance without or with minimal training?

• Learning curve extrapolation: extrapolating the validation accuracy

learning curve via a parameteric model.

• Zero-cost proxies: assessing the generalizability of an architecture

with a single forward pass of a single minibatch of data

• Subset selection: Training the architecture on a subset of the data

26



Performance Predictor (Speedy Performance Estimator)

An example performance predictor can be the following: Let L denote a

loss function, fθ(x) the output of a neural network f with input x and

parameters θ, and let θt,i denote the parameters of the network after t

epochs and i minibatches of SGD.

After training the network for T epochs, we sum the training losses

collected so far to get the following Training Speed Estimate (TSE)

TSE =
T∑
t=1

[
1

B

B∑
1

L(fθt,i (xi ),yi )] (5)

The idea is then use this for evaluating the sub-networks, since it gets a

better rank correlation performance usually.
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Performance Predictor (NASWOT)

Or you can simply take a number of networks and evaluate all of them

using these low-fidelity proxies!
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Is This A Solved Problem?

Well, Yes and No

• Search spaces are normally manually defined!

• Low-fidelity methods normally work at small search spaces.

• Many of the search methods actually overfit to the search space!
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Summary

Search Spaces: Global, Modular and Combined

Search Strategies

• Reinforcement learning

• Gradient-based optimization

• Evolutionary algorithm

• Performance estimators
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