Network Compression (2)

Aaron Zhao, Imperial College London

Introduction

Neural Network Compression
+ Winograd Transformed Convolution

+ Low-rank Approximation

 Chaining Compression Algorithms

« Knowledge Distillation

3/28

Winograd Transformation

Winograd transformation
Very simple initiative:
Let’s replace expensive operations (multiplication) with cheap ones (addition).
Let’s replace the following
Y= Xz
With this one

y=x+z

5/28

Winograd: an illustration

— dO dl d2 J0
F(Z??’) - |:d3 d4 d5:| gl

F(2,3) has in total 2 x 3 = 6 multiplications

dy dy d2] 90 _ [m1+m2+m3]

5; Mg — Mg — My
my = (dy — d3)go
my = (dy + dz)gﬁgzlﬂh
mz = (dy — dl)go 921+g2
my = (d; — d3)gs

Now we have in total 4 multiplications but a bit more additions

6/28

Winograd: an illustration (ii)

Input (tiled) Input/Filter transformation Multlpllcatlon Output transformation Output
T

A~
.
-1
0
o

Internal tile size:
a=m+r -1

Figure 1:

Rewrite it in matrix form
Y = AT[(GgG") - (BTdB)|A
Basically, g and d would be transformed values to the winograd space to do a

point-wise multiplication.

7/28

Knowledge Distillation

The Teacher-student Paradigm

The general idea is to have a capable model (teacher) and use its output to
‘teach’ a smaller student model.

o soft labels
predictions

distilled| knowledge

. hard labels
ad) predictions aE M

Training data
Student

9/28

Soft-labels

We construct a soft label, this is normally the final layer of the embedding
from the larger model:

ysoft = fw(X)

Then we use this soft label to form a loss function with the output of the
small model (student).

’de = g(ysoft7 f/w’ (X))
where f,,(X) is the output of the student model.

Normally, this is actually added to the actual loss as an additional
regularization term:

£:’cce+’ckd

10/28

Logits-based KD
’de = g(ysoftv f/w’ (X))
where f;,(X) is the output of the student model.

Function g is commonly lp norms, but can also be other functions.

11/28

Activation-based KD

Activation-based KD forms an additional regularization loss through all (or a
subset of) activation values to form the loss.

L
’ckd = Zg(y;ct’fciwt(X))

=1

where L is the total number of layers.

Teacher Model
e — .i -
Wil Distillation Loss
i
Student Model

12/28

Attention-map for activation-based KD

As we have explained, the design of the regularization loss g can be fairly

complex. Let’s consider a layer’s activation functions z,,, € RE*H*W.

We define an attention map as a function p : REXH*XW _ RH>XW Eor
instance, this can be:

+ Sum of absolute values: p(z) = Zil |z,

C

+ Sum of absolute values with power m: p(z) = >~ A"

|z

13/28

Attention-map for activation-based KD (ii)

Fo(4) F.A F.4) F.@ F,,

) I I I Y I [
=]] Jale]]=
i) | Jele] |l
-----m---
-1 | Jolol. L.

-m--mm--

14/28

ResNet-34

ResNet-101

ResNet-34
» ﬂ
-

ResNet-lol

Attention-map for activation-based KD (iii)

Performant networks tend to have similar attention maps

= £CE+/32||

oL [T QT [”

where Qis and Q% are vectorized version of activation values for the student
and the teacher networks respectively.

The whole 2 Z

i || HQ I — “Q ” || part is an additional loss term that
S T

encourages the student network to have the same ‘attention map’ as the
teacher network.

15/28

Chaining Compression Algorithms

Chaining compression techniques

In fact, many compression techniques are working on fairly orthogonal
spaces. A great idea to harvesting more compression rate is chaining a bunch
of them together.

Multiplying gains when you chain a bunch of compression algorithms
together.

The following example is what I have tried to run fine-grained pruning and
fixed-point quantizations on a CIFAR10 network. The CIFAR10 network is a
variant of VGG.

17/28

Chaining compression techniques (ii)

Method Bitwidth [Density | Compression top-1/top-5
rate accuracy
baseline 32 100.00% - 91.37%/99.67%
fixed-point 4 100.00% 8.00x 89.64%/99.74%
(fixed)
dynamic fixed- 4 100.00% 8.00% 90.63%/99.68%
point (DFP)
fine-grained 32 15.65% 6.39% 91.12%/99.70%
pruning
(pruned)
pruned + fixed 6 15.65% 33.92% 90.59%/99.68%
pruned + DFP 6 15.65% 33.92x 91.04%/99.70%

18/28

Chaining compression techniques (iii)

The best quantization method pushes the compression rate to 8 x with less
than 1% loss in accuracy.

Adding the pruning optimization on top of the quantization, we push the
compression rate to 33.92 x with a even better accuracy.

Why?: sometimes pruning serves as a regularization so you might have a

better accuracy!

19/28

Lossy and Lossless Compressions
Distinguish between lossy and lossless compressions
+ Quantization — lossy compression

« Pruning - lossy compression

+ Decoding - lossless compression

Quantization: less bits per weight

Pruning: less number of weights P ~ Huffman Encoding
7
\ P e <
| | Cluster the Weights 1 '/ \|
1 1
1 | | 1
' S ' || Encode Weights | 1
original same : : same : ncoctel e d : same
network accuracy, |Generate Code Book ,accuracy | 1accuracy
1 1 | 1
: 3 = =
°’s'5i'z':a' 913X || antize the Weights | 2;"'3_1" ! | Encodeindex | ! 3:"":.9"
! |with Code Book :re uctlon: Ireduction
: 17 \ 7
1
1

20/28

Compression and Re-training
+ Quantization — Lossy Compression

« Pruning - Lossy Compression

« Huffman Decoding - Lossless Compression

Re-training becomes a critical operation to increase the performance
degradation from lossy compression.

However, lossless compressions do not cause any performance degradation
and thus has no need to use re-training.

Chaining these optimizations gives multiplying gains! Many of the
compressions are (partially) orthogonal.

21/28

Special hardware support

This however normally means you need special hardware support!

« Sparse Matrix Multiplication supoort

+ Decoder and encoder support for Huffman decoding

« Low-precision multiplication units

Nzero
Detect

Pointer Read Sparse Matrix Access

Relativi
Index

22/28

Quantization with KD

KD, as a training framework, can also be used in conjunction with

compression algorithms.

Full-precision
Student

Transformer layer

Embedding

Quantized
Student
Lprea
Leym

Transformer layer

Forward
propagation

Ternarization

W= 0w

Embedding

Backward propagation, update in full-precision

wt*t =

L
UpdateParameter (w", o 7%

Distillation loss
L= Ltym + Lprea Lx

Full-precision
Teacher

Transformer layer

Embedding

23/28

Quantisation with KD
Teacher network: full-precision network

Student network: low-precision network

Full-precision
Student

Quantized
Student

Full-precision
Teacher

o e LPTEd o
Classifier Classifier Classifier
Transformer layer Transformer layer Lerm Transformer layer

Embedding

Ternarization
W= Q,(w)

L x

Embedding

Forward
propagation

Distillation loss
L= Ltym + Lprea Lx

Embedding

Backward propagation, update in full-precision

L
witl = UpdateParameter(w‘,W,ﬂt)

24/28

Quantisation with KD (ii)

The first distillation loss: knowledge in the embedding layer and the
outputs of all Transformer layers of the full-precision teacher model to the
quantized student model, by the mean squared error (MSE).

Full-precision Quantized Full-pregcision
Student Student Teacher
Lpre
.
Transformer layer Transformer layer Lerm Transformer layer
Ternarization Forward Distillation loss
W= Quw) Lx propagation L= Lirm + Lyrea L x
Embedding Embedding Embedding

Backward propagation, update in full-precision

)

t+1 _ t — pt
w'*t = UpdateParameter (w' ’6Wt'7’

25/28

Quantisation with KD (iii

The second distillation loss: the loss between teacher model’s attention
scores from all attention heads in all layers and the student model’s attention

scores.
Full-precision Quantized Full-pregcision
Student Student Teacher
Lpre
.
Transformer layer Transformer layer Lerm Transformer layer
Ternarization Forward Distillation loss
W= Quw) Lx propagation L= Lirm + Lyrea L x
Embedding Embedding Embedding

Backward propagation, update in full-precision

)

t+1 _ t — pt
w'*t = UpdateParameter (w' ’6Wt'7’

26/28

Quantisation with KD (iv)

The third distillation loss: the loss between teacher model’s logits and the

student model’s logits.

Quantized
Student

Full-precision
Student

Transformer layer

Transformer layer

Forward
propagation

Ternarization

W= 0w

Embedding

Embedding

Backward propagation, update in full-precision

)

t+1 t —— pt
w'*t = UpdateParameter (w' ’6Wt'7’

Lprea

Lerm

Distillation loss
L= Ltym + Lprea Lx

Full-precision
Teacher

Transformer layer

Embedding

27/28

Quantisation with KD (v)

TinyBERT generally has a better accuracy given the same quantization

budget.
W-E-A Size MNLI-
bits) oE) A QQP OQNLI SST2 CoLA STS-B MRPC RIE
BERT 32-32-32 418 (x1) | 84.5/849 87.5/90.9 920 93.1 58.1 89.8/89.4 90.6/86.5 71.1
TinyBERT 32-32-32 258 (x1.6) | 84.5/84.5 88.0/91.1 91.1 93.0 54.1 89.8/89.6 91.0/87.3 71.8
Q-BERT 288 43 (x9.7) | 76.6/77.0 - B 84.6 B N N B
Q2BERT 2-8-8 43 (x9.7) | 47.2/413 67.0/759 61.3 80.6 0 4.4/47 81.2/684 527
2-bit TernaryBERT 1y (ours) 2-2-8 28 (x14.9) | 83.3/83.3 86.7/90.1 91.1 92.8 557 87.9/87.7 91.2/87.5 729
TernaryBERT] 4y (ours) 2-2-8 28 (x14.9) | 83.5/83.4 86.6/90.1 91.5 92.5 543 87.9/87.6 91.1/87.0 722
TernaryTinyBERT 1y (ours) 2-2-8 18 (x23.2) | 83.4/83.8 87.2/90.5 899 93.0 53.0 86.9/86.5 91.5/88.0 71.8
Q-BERT 8-8-8 106 (x3.9) | 83.9/83.8 - - 929 - - - -
apii QBBERT 8-8-8 106 (x3.9) - 88.0/- 906 922 585 89.0/- 89.6/- 688
8-bit BERT (ours) 8-8-8 106(x3.9) | 84.2/847 87.1/905 918 937 606 89.7/89.3 90.8/873 71.8
8-bit TinyBERT (ours) 8-8-8 65(x6.4) | 844/846 87.9/91.0 91.0 933 547 90.0/89.4 91.2/87.5 722

28/28

	Introduction
	Neural Network Compression

	Winograd Transformation
	Winograd transformation
	Winograd: an illustration

	Knowledge Distillation
	The Teacher-student Paradigm
	Soft-labels
	Logits-based KD
	Activation-based KD
	Attention-map for activation-based KD

	Chaining Compression Algorithms
	Chaining compression techniques
	Lossy and Lossless Compressions
	Compression and Re-training
	Special hardware support
	Quantization with KD
	Quantisation with KD

