
Computation Graph and Operator-
level Optimization
Aaron Zhao, Imperial College London

Introduction

Computation graphs
We have looked a few algorithmic optimizations, and they are mainly ‘lossy’
optimizations. Most of them rely on the redundancy of NNs and also the
recovering power of SGDs.

On the compiler stack, we also have the opportunity to issue a range of
classic lossless optimizations.

• Graph-level optimizations, we refer to a computation graph in this case, an
example could be the MaseGraph.

• Operator-level optimizations, how do we perform lower-level optimization
if given hardware information.

3/32

A high-level overview

Grappler (Tensorflow)
Grappler is designed for Tensorflow, to optimize the Graph.

This is normally on the middleware level. Grappler takes various front-end
languages (Python, Swift … C++). The middleware obtains a Graph and we
have to deploy this to various hardware backends.

5/32

A high-level overview
These optimizations are normally at two levels:
• Graph-level
• Operator-level

6/32

Torch Compile
• TorchDynamo

‣ Uses CPython Frame Evaluation to allow per-interpreter function pointer
to handle the evaluation of frames.

‣ An execution frame is how Python tracks the values of local variables
during a function call.

‣ This CPyton feature allows external C code to control frame evaluation.
‣ This means a JIT can participate in the execution of Python code.

• TorchInductor
‣ Triton-based, maps code to multiple backends (eg. AMD, Nvidia)

• AOT Autograd
‣ Captures backward pass computation, ahead of time.

7/32

Optimizations

Constant folding
Rewrites certain operations in the graph, if we know the values ahead-of-
time.

Constant propagation

𝐴𝑑𝑑(𝑐1, 𝐴𝑑𝑑(𝑥, 𝑐2)) => 𝐴𝑑𝑑(𝑥, 𝑐1 + 𝑐2)

Operations with neutral & absorbing elements

𝑥*𝑂𝑛𝑒𝑠(𝑠) => 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦(𝑥), 𝑖𝑓 𝑠ℎ𝑎𝑝𝑒(𝑥) == 𝑜𝑢𝑡𝑝𝑢𝑡_𝑠ℎ𝑎𝑝𝑒

9/32

Graph Operation Fusion
Replaces commonly occurring subgraphs with optimized fused kernels

Examples of patterns fused:

• Conv2D + BiasAdd + Activation

• Conv2D + FusedBatchNorm + Activation

• Conv2D + Squeeze + BiasAdd

• MatMul + BiasAdd + Activation

10/32

Graph Operation Fusion
Graph Operation Fusion Fusing ops together provides several performance
advantages:

• Completely eliminates the scheduling overhead (great for cheap ops)

• Increases opportunities for ILP, vectorization etc.

• Improves temporal and spatial locality of data access. E.g. MatMul is
computed block-wise and bias and activation function can be applied while
data is still “hot” in cache.

11/32

Graph Operation Rewrites
Rely on heuristics to repack operations on the graph level.

12/32

Graph Operation Rewrites (ii)

13/32

Graph Operation Rewrites (iii)

Graph level optimizations are normally at a coarse-grained level.

More importantly, most of them have to rely on certain heuristics, for
instance, this could be the re-write rules for fusion strategies.

Internally, in Pytorch land, these re-write rules are implemented as fx passes!

14/32

How graphs are handled in Pytorch
import torch

Simple module for demonstration
class MyModule(torch.nn.Module):
 def __init__(self) -> None:
 super().__init__()
 self.param = torch.nn.Parameter(torch.rand(3, 4))
 self.linear = torch.nn.Linear(4, 5)

 def forward(self, x):
 return self.linear(x + self.param).clamp(min=0.0, max=1.0)

module = MyModule()

from torch.fx import symbolic_trace

15/32

How graphs are handled in Pytorch (ii)
Symbolic tracing frontend - captures the semantics of the module
symbolic_traced: torch.fx.GraphModule = symbolic_trace(module)

High-level intermediate representation (IR) - Graph
representation
print(symbolic_traced.graph)
"""
graph():
 %x : [num_users=1] = placeholder[target=x]
 %param : [num_users=1] = get_attr[target=param]
 %add : [num_users=1] = call_function[target=operator.add](args
= (%x, %param), kwargs = {})
 %linear : [num_users=1] = call_module[target=linear](args =
(%add,), kwargs = {})
 %clamp : [num_users=1] = call_method[target=clamp](args =
(%linear,), kwargs = {min: 0.0, max: 1.0})
 return clamp
"""

16/32

How graphs are handled in Pytorch (iii)

17/32

The Operator-level Optimizations

Operator-level optimizations

On the graph-level, we care about large operations (more like layers).

On the operator level, this is now closer to the hardware. We typically
prioritize the most compute-intensive tasks, thereby mostly focus on loop
manipulations.

19/32

Loop tiling
The following is an example of matrix vector multiplication.

There are three arrays, each with 100 elements. The code does not partition
the arrays into smaller sizes.

int i, j, a[100][100], b[100], c[100];
int n = 100;
for (i = 0; i < n; i++):
 c[i] = 0;
 for (j = 0; j < n; j++):
 c[i] = c[i] + a[i][j] * b[j];

20/32

Loop tiling
After loop tiling is applied using 2 ∗ 2 blocks, the code looks like:

int i, j, x, y, a[100][100], b[100], c[100];
int n = 100;
for (i = 0; i < n; i += 2):
 c[i] = 0;
 c[i + 1] = 0;
 for (j = 0; j < n; j += 2):
 for (x = i; x < min(i + 2, n), x++):
 for (y = j; y < min(j + 2, n), y++):
 c[x] = c[x] + a[x][y] * b[y];

21/32

Loop tiling
• Tiling partitions a loop’s iteration space into smaller chunks or blocks

• This ensures data used in a loop stays in the cache until it is reused.

• This leads to partitioning of a large array into smaller blocks, thus fitting
accessed array elements into cache size, enhancing cache reuse and
eliminating cache size requirements.

22/32

Loop unrolling
int x;
for (x = 0; x < 100; x++):
 do_something(x);

for (x = 0; x < 100; x += 5):
 do_something(x);
 do_something(x + 1);
 do_something(x + 2);
 do_something(x + 3);
 do_something(x + 4);

The amount of unrolling is associated with the hardware parallelism.

This looks simple, but can become very complex if we have loop nests. It
becomes more complex if we start to think about it in conjunction with tiling
and other operations.

23/32

Loop permutation for data layout optimization
What is Data Layout?

Data layout optimization converts data into one that can use better internal
data layouts for execution on the target hardware.

For instance, a DL accelerator might exploit 4 × 4 matrix operations,
requiring data to be tiled into 4 × 4 chunks to optimize for access locality.

A good data layout:

• Improves locality

• Reduces the number of off-chip memory accesses

• May reduce Ops (eg. unnecessary transpose)

This is normally achieved by loop permutation.

24/32

More on loop optimizations
Loop fusion and fission: this breaks large loop to smaller ones or fuse small
loops, normally for locality.

Loop Skewing (Polyhedral Optimization): Normally for deep nested
loops, re-arrange loops to achieve a better access pattern.

Loop Splitting: attempts to simplify a loop or eliminate dependencies by
breaking it into multiple loops which have the same bodies but iterate over
different portions of the index range.

and more…

25/32

Why we do this?
Loop-level manipulation is very complex, however, the core idea is to push
the performance to the optimal point!

• Improve locality for memory-bound scenarios

• Improve parallelism for compute-bound scenarios

26/32

Arithmetic Operator Optimization
• Arithmetic simplification

‣ Hoisting: 𝐴𝑑𝑑(𝑥*𝑎, 𝑥*𝑏𝑥*𝑐) = 𝑥*𝐴𝑑𝑑(𝑎, 𝑏, 𝑐)

‣ Node reduction: 𝑥 + 𝑥 + 𝑥 = 3𝑥, one op instead of two ops

• Broadcast minimization (𝑚𝑎𝑡𝑟𝑖𝑥1 + 𝑠𝑐𝑎𝑙𝑎𝑟1) + (𝑚𝑎𝑡𝑟𝑖𝑥2 +
𝑠𝑐𝑎𝑙𝑎𝑟2) => (𝑚𝑎𝑡𝑟𝑖𝑥1 + 𝑚𝑎𝑡𝑟𝑖𝑥2) + (𝑠𝑐𝑎𝑙𝑎𝑟1 + 𝑠𝑐𝑎𝑙𝑎𝑟2)

• Better use of intrinsics 𝑀𝑎𝑡𝑚𝑢𝑙(𝑇 𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒(𝑥), 𝑦) =>
𝑀𝑎𝑡𝑚𝑢𝑙(𝑥, 𝑦, 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒𝑥 = 𝑇𝑟𝑢𝑒)

27/32

Memory Operator Optimization
• Swap-in and Swap-out Optimizations: actively estimate memory usage

and swap in/out idle data to host memory

• Recomputation optimization: if moving in/out the data is slow, why not
just re-compute that value.

28/32

Automated optimization?
Automated low-level optimization was very popular but now …

Hashed to a few popular kernels!

29/32

Flash Attention

Attention is very memory-bound, if you implement them naively.

Standard implementation shows the utmost disrespect for the way HW
operates. It’s basically treating HBM load/store ops as 0 cost (it’s not “IO-
aware”).

FlashAttention mainly use two tricks:

30/32

Flash Attention (ii)
• Tiling
• Recomputation

31/32

Summary
• The Computational Graph

‣ Constant folding

‣ Graph operation fusion

‣ Graph operation rewrites

• The Operator-level Graph

‣ Loop tiling

‣ Loop unrolling

‣ Loop permutation

‣ Arithmetic operator optimization

‣ Memory operator optimization

32/32

	Introduction
	Computation graphs

	A high-level overview
	Grappler (Tensorflow)
	A high-level overview
	Torch Compile

	Optimizations
	Constant folding
	Graph Operation Fusion
	Graph Operation Fusion
	Graph Operation Rewrites
	How graphs are handled in Pytorch

	The Operator-level Optimizations
	Operator-level optimizations
	Loop tiling
	Loop tiling
	Loop tiling
	Loop unrolling
	Loop permutation for data layout optimization
	More on loop optimizations
	Why we do this?
	Arithmetic Operator Optimization
	Memory Operator Optimization
	Automated optimization?
	Flash Attention
	Summary

