
Distributed Deep Learning
Aaron Zhao, Imperial College London

Introduction

Distributed computing is scalability

In previous lectures, we mainly looked at single-node computation.

3/30

Distributed computing is scalability

4/30

Distributed Computing is Scalability
• Servers are stored in racks (42U rack, normally).

• Rack servers (typically 3U) are installed in these racks, each server normally
has 4-8 GPU cards, interconnected through PCIe.

• Servers in the same rack normally has a faster network (ToR).

• Racks are also connected, but a lot slower in terms of point-to-point
latency.

How do we map AI workloads into such systems?

5/30

AI Compute Parallelism

Canonical view of ML parallelism
• Data Parallelism: data is partitioned across distributed workers, but the

model is replicated.

• Operator parallelism: partition the computation of a specific operator,
such as matmul, along non-batch axes, and compute each part of the
operator in parallel across multiple devices.

• Pipeline parallelism: places different groups of ops from the model graph,
referred as stages, on different workers

These parallelism can also be mixed.

We replicate the same model to various workers (𝑁 GPUs). The data is then
split into 𝑁 parts to be deployed on these 𝑁 GPUs.

7/30

Operator and model parallelism
• Different colors represent different GPU devices
• We can separate the model and put different portions of the model to

different devices
• Some people say tensor parallelism – this is if you chop inside an operator,

and operator/model parallelism normally refers to the fact that you are
chopping at the operator granularity.

8/30

Pipeline parallelism
• Very similar to CPU pipelining
• Works both in inference and training

9/30

An alternative view of ML parallelism
• Intra-operator parallelism:

An operator works on multi-dimensional tensors. We can partition the
tensor along some dimensions, assign the resulting partitioned
computations to multiple devices, and let them execute different portions of
the operator at the same time.

• Inter-operator parallelism:

We define inter-operator parallelism as the orthogonal class of approaches
that do not perform operator partitioning, but instead, assign different
operators of the graph to execute on distributed devices.

10/30

ML parallelism

11/30

ML Parallelism Model parallelism

12/30

Distributed Training

Parameter server
It follows the data parallel approach.

In training, we split the data, and compute update at each local replica.

We then aggregate the gradients and propagate back the updated weights.

14/30

Parameter server (ii)
We need to sync the gradients and updated weights.

We gather the gradients in parameter server or parameter servers.

15/30

The ring all reduce pattern
We need to sync the gradients and updated weights.

The most obvious communication pattern is to allow a crossbar connection,
however, this is not very scalable.

16/30

The ring all reduce pattern
With the following physical connections

17/30

The ring all reduce pattern

18/30

The ring all reduce pattern (ii)

19/30

The ring all reduce pattern (iii)

20/30

The ring all reduce pattern (iv)

21/30

The ring all reduce pattern (v)

22/30

The ring all reduce pattern (vi)

23/30

The ring all reduce pattern (vii)

Normally you do not need to worry. Typically, you don’t need to be
concerned about the distributed training strategy, as PyTorch, NCCL, and MPI
collectively manage most of it for you. However, you must consider the
distributed training strategy if you are using more than 8 GPUs, which
exceeds the capacity of a single node.

24/30

Federated Learning

The concept
Let’s do not let the user data leave their phone (tricky!).

Phase 1 and 2: The server selects a subset of clients, with each algorithm
employing a distinct sampling strategy. These clients update their local
weights from the server.

26/30

The concept (ii)
Let’s do not let the user data leave their phone (tricky!).

Phase 3: each client perform training on a model replica locally, using its own
data. This training is always running concurrently, no matter a device is
chosen or not. The server also normally gives a time constraint on this
training, if a client did not finish its training in time, it is ignored (this is
known as stragglers).

27/30

The concept (iii)
Let’s do not let the user data leave their phone (tricky!).

Phase 4 and 5: Clients now transfer back weight updates across 𝐸 epochs
back to the server The server accumulate these updates.

28/30

Pros and Cons
Biggest advantage

No “data” leaves the user device!

Other advantages

• Some level of privacy protections

• Give people an opportunity to do differential privacy

Disadvantages

• Can take very long to train since effectively there is a subsampling.

• If server is not honest, bad things can happen.

29/30

Summary
• Different parallelisms (eg. data, model, pipeline)

• Distributed Training, concepts on parameter servers and Ring All Reduce.

• Other learning paradigms: federated learning.

30/30

	Introduction
	Distributed computing is scalability
	Distributed computing is scalability
	Distributed Computing is Scalability

	AI Compute Parallelism
	Canonical view of ML parallelism
	Operator and model parallelism
	Pipeline parallelism
	An alternative view of ML parallelism
	ML parallelism
	ML Parallelism Model parallelism

	Distributed Training
	Parameter server
	The ring all reduce pattern
	The ring all reduce pattern
	The ring all reduce pattern

	Federated Learning
	The concept
	Pros and Cons
	Summary

