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Overview
• Lab 0:

‣ Introducing MASE and FX Graph
‣ Insert a LoRA adaptor

• Lab 1:
‣ Quantization-aware training
‣ Unstructured pruning

• Lab 2:
‣ NAS with Bayesian optimization
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Introduction to the Mase IR,
MaseGraph and Torch FX passes



Tools
Use Google Colab if you do not have a powerful enough work station with a
GPU, it is likely you will have to use Google Colab for this course.

There is a quick introduction on how to set it up correctly and use it. The
department will reimburse the cost of using Colab Pro.
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Accessing MASE
MASE has two modes to be accessed

• Direct usage through the command line interface, use it as a tool (Not
suggested…)

• Interactive usage, import it as a package

In all the labs, we are dealing with the second usage.
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Installing MASE
Avoid installing directly using your native Python

• Docker: OS-level virtualization, containers

• Conda: Environment controlling

• NIX

Follow the Readme on the installation, pick the one you like.
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Loading a pre-trained BERT model
In today’s ML world, we typically use pre-trained models and fine-tune them
on our data.

This lab aims to show you how to do that.

First, we load a model from the Hugging Face model hub, which is argubaly
the most popular model hub.

from transformers import AutoModelForSequenceClassification

model =
AutoModelForSequenceClassification.from_pretrained("prajjwal1/
bert-tiny")
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FX Graph
There are 6 different types of nodes in an FX graph

• placeholder
• get_attr
• call_function
• call_module
• call_method
• output

A generated FX graph can be hard to visualize because of its size and
complexity.
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MASE IR and Passes
• FX Graph is a symbolic representation of a PyTorch model.
• FX IR has no information regarding the workload being executed by the

graph - that’s where the Mase IR comes in
• The major benefit of the Mase IR is in offering a common abstraction layer

for both hardware and software workloads
• So that we can represent every optimization/analysis as a pass!

def dummy_pass(mg, pass_args={}):
    
    # ... do some setup 
    pass_outputs = {}

    for node in mg.fx_graph.nodes:
        # ... do stuff

    return mg, pass_outputs
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An example of a Pass
from chop.tools import get_logger

logger = get_logger("mase_logger")
logger.setLevel("INFO")

def count_dropout_analysis_pass(mg, pass_args={}):
    dropout_modules = 0
    dropout_functions = 0
    for node in mg.fx_graph.nodes:
        if node.op == "call_module" and "dropout" in node.target:
            logger.info(f"Found dropout module: {node.target}")
            dropout_modules += 1
        else:
            logger.debug(f"Skipping node: {node.target}")
    return mg, {"dropout_count": dropout_modules
dropout_functions}
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Polymorphism of Passes
A pass, no matters whether it is an analysis pass or a transform pass, takes
the following format

# pass_args is a dict 
def pass(mg, pass\_args):
  ... 
  # info a a dict 
  return mg, info

This then makes chaining passes together very easy.

mg = MaseGraph(model=model)
mg, _ = pass_a(mg, pass_args)
mg, _ = pass_b(mg, pass_args)
mg, _ = pass_c(mg, pass_args)
...
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Finetuning Bert for Sequence
Classification using a LoRA adapter



LoRA
• Full model fine-tuning can be expensive and time-consuming.

‣ GPUs have limited memory.
‣ More parameters mean more computation.
‣ Can we fine-tune only a part of the model?
‣ We have LoRA for that!

• LoRA is a lightweight adapter for fine-tuning pre-trained models.

𝑦 = 𝑥𝑊 = 𝑋(𝑊 +𝐴𝐵) where 𝐴 and 𝐵 are low-rank matrices
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LoRA (ii)
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LoRA (iii)
The insertion of the LoRA adapter is done through a pass.

mg, _ = passes.insert_lora_adapter_transform_pass(
    mg,
    pass_args={
        "rank": 6,
        "alpha": 1.0,
        "dropout": 0.5,
    },
)
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Some training parameters you might use
Canonical training parameters

• batch_size: how many inputs to proceed concurrently

• learning_rate: the critical parameter for your optimizer

• max_epochs: maximum number of epochs to train

• dropout: the dropout rate

LoRA parameters

• rank: the rank of the low-rank matrices

• alpha: the weight of the adapter
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Underfitting and Overfitting

• Underfitting: the model is too simple to capture the data.

• Overfitting: the model is too complex and memorizes the data.
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Causes of Underfitting and Overfitting
• Model sizes: too small or too large.

• Learning rate: too small or too large.
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The underlying system
You need to have a rough idea of what is happening in the underlying
hardware system.

• Data: is your data on the disk or on the device? If it is on the device, is it in
CPU RAM or GPU VRAM?

• Data pre-processing: is this on CPU or GPU?

• Actual Training: is this on CPU or GPU? If it is on GPU, how much data do
you need to ship from CPU to avoid idling GPUs? What is the interconnect
bandwidth? And is it a bottleneck?

MASE automatically handles some of these things, but you need to have an
idea of what is going on.

Use nvidia-smi and htop to inspect the system while running your stuff!

wathc -n 0.5 nvidia-smi inspects the GPU usage and refreshes every 0.5
seconds.
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Dataset definition
class MyDataset(Dataset): 
  def __len__(self): 
    return len(self.X)

  def __getitem__(self, idx): 
    return self.X[idx], self.Y[idx]

Dataset definition

• __len__ defines the size of the dataset

• __getitem__ defines how elements in a dataset is accessed

You can almost tell that X and Ys are prepared when instantiating this class,
from the __getitem__ function you can tell elements are accessed through an
internal list (CPU RAM or GPU VRAM).
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Model definition
  class MyModel(nn.Module): 
    def __init__(self): 
      super(MyModel, self).__init__()
      self.blocks = nn.Sequential(...)

    def forward(self, x): 
      return self.blocks(x)

is standard Pytorch semantics

• We define a neural network by subclassing nn.Module. If you do not
understand semantics such as super, __init__, forward, you should look
them up and study OOP in your own time.

• We initialize the neural network layers in __init__.

• Every nn.Module subclass implements the operations on input data in the
forward method.
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Pytorch 101
• nn.Sequential: an ordered container of modules. The data is passed through

all the modules in the same order as defined. You can use sequential
containers to put together a quick network.

• nn.Linear and nn.BatchNorm1d: these are the layers of the network.

• nn.Modules

‣ PyTorch uses modules to represent neural networks.

‣ Modules are: Building blocks of stateful computation.

‣ PyTorch provides a robust library of modules.

‣ Tightly integrated with PyTorch’s autograd system, directly interacts
with Optimizers.

• nn.functional

‣ Implementation of many basic autograd functions.
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Pytorch 101 (ii)
‣ Lower-level than nn.Modules, normally directly connects to backend

(CUDA/CPU) functions.

‣ One can imagine nn.Module as a wrapper of nn.functional.
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Pytorch 101: Autograd Funcitons
• Autograd functions normally take the following form.
• Customized forward and backward functions.
• ctx is a context memory for buffering intermediate values.
• Some commonly used functions such as torch.functional.conv2d are directly

implemented in C++/CUDA.

class LegendrePolynomial3(torch.autograd.Function): 

  @staticmethod 
  def forward(ctx, input): 
    ctx.save_for_backward(input) 
    return 0.5 * (5 * input ** 3 - 3 * input)
  @staticmethod 
  def backward(ctx, grad_output): 
    input, = ctx.saved_tensors 
    return grad_output * 1.5 * (5 * input ** 2 - 1)
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Pytorch 101: Module
• Wraps autograd functions, drop them directly in forward.

class Conv2d(nn.Module): ... 
  def _conv_forward(self, input, weight, bias): ... 
    return F.conv2d(
      input, weight, bias, 
      self.stride, self.padding, 
      self.dilation, self.groups)

  def forward(self, input: Tensor) -> Tensor: 
    return self._conv_forward(input, self.weight, self.bias)
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Pytorch 101: High-level overview
• Optimizers (the optimizer we use for training) are only accessing

nn.Module.

• Trainable parameters that are not wrapped in modules may not be tracked!

optimizer = torch.optim.SGD(
    model.parameters(), lr=learning\_rate)
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Running Quantization-Aware
Training (QAT) on Bert



Two quantization paradigms
• Quantization-Aware Training (QAT): the model is trained with quantization

in mind. We apply quantization to the model during training.

• Post-training quantization: the model is trained normally. We apply
quantization to the model after training.

Which one do you think is more popular?
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Applying a Quantization Pass
import chop.passes as passes

quantization_config = {
    "by": "type",
    ...
    "linear": {
        "config": {
            "name": "integer",
            "data_in_width": 8,
            "data_in_frac_width": 4,
            "weight_width": 8,
            "weight_frac_width": 4,
            "bias_width": 8,
            "bias_frac_width": 4,}}}

mg, _ = passes.quantize_transform_pass(
    mg, pass_args=quantization_config)
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Unstructured Pruning on Bert



Various Pruning Techniques
Based on Granularity
• Unstructured pruning: removing individual weights from the model.
• Structured pruning: removing entire neurons, layers, or channels from the

model.

Do you think unstructured pruning is more popular than structured
pruning?

Based on Strategy
• Progressive pruning: gradually pruning the model over time.
• Iterative pruning: pruning the model in multiple iterations.
• Prune and retrain: pruning the model and retraining it.

and so on
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Applying a Pruning Pass
import chop.passes as passes

pruning_config = {
    "weight": {
        "sparsity": 0.5,
        "method": "l1-norm",
        "scope": "local",
    },
    "activation": {
        "sparsity": 0.5,
        "method": "l1-norm",
        "scope": "local",
    },
}

mg, _ = passes.prune_transform_pass(mg, pass_args=pruning_config)
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Neural Architecture Search (NAS)
with Mase and Optuna



Network Architecture Search
NAS is a technique to automatically search for the best neural networkNAS is
a technique to automatically search for the best neural network architecture.
In this lab, we will use Optuna to perform NAS on a simple BERT model

• Define the search space

• Write the model constructor

• Write the objective function
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Defining the Search Space
The search space is defined as a dictionary, where the keys are the
hyperparameters and the values are the search spaces.

import torch.nn as nn
from chop.nn.modules import Identity

search_space = {
    "num_layers": [2, 4, 8],
    "num_heads": [2, 4, 8, 16],
    "hidden_size": [128, 192, 256, 384, 512],
    "intermediate_size": [512, 768, 1024, 1536, 2048],
    "linear_layer_choices": [
        nn.Linear,
        Identity,
    ],
}
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Model constructor and objective function
Write a model constructor

The model constructor takes an “instance” or a sample of a set of
hyperparameters and constructs a model.

Objective function

In this lab, the objective function is simply the evaluation accuracy.

In the real world, we normally use a more complex objective function,
involving parameters such as the FLOPs, the number of parameters, or the
inference time.
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Bayesian Optimization
Optuna uses Bayesian optimization to search for the best hyperparameters
under the hood.

Bayesian optimization (BO) is an optimization technique that uses
probabilistic models to predict the performance of a model at a given
hyperparameter configuration. It can then use this model to guide the search
for the best hyperparameters.
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