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Introduction



The rule of thumb
• People only care about the models at any given time.

‣ GPTs - (Transformer based, decoder-only)

‣ Diffusion (Image generation)

‣ CLIP - (Contrastive-learning)

‣ SAM - (Segmentation foundation model)

‣ Whisper (Neural ASR)

• You cannot trade-off model performance too much

‣ Common performance engineers logic is to get 10 × speed-up with a 5%
decrease in accuracy.

‣ 5% accuracy drop on standard image classification benchmarks mean you
use models that are from the previous generation!
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Charactersitcs of workloads
The characteristics come from two aspects: the data and the model

I will breakdown the survey of different workload characteristics for different
fields, this includes

• Computer Vision

• Natural Language Processing

• Graph Representation Learning

I will go through them in a fairly fast pace, it is expected you do extra
readings following the links in the course wiki.
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Computer Vision Workloads



Basic Building Blocks
We will mainly focus on tasks on 2D images.

Basic building blocks for CV networks are:

• Convolution

• Linear

We will later look at popular vision network building blocks

• Residual Blocks

• UNet

• Vision Transformer

We will look at the following tasks

• Classification

• Segmentation
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Basic Building Blocks
Let’s unify our language, for each layer, we consider

• an input activation tensor (feature in), 𝑿𝒍 for layer 𝑙.

• the free parameters tensor (weights), 𝑾𝒍

• an output activation tensor (feature out), 𝑿𝒍+𝟏
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Convolution
torch.nn.Conv2d takes input with size (𝑁, 𝐶𝑖𝑛, 𝐻, 𝑊), and outputs
(𝑁, 𝐶𝑜𝑢𝑡, 𝐻, 𝑊), let’s assume kernel size is 𝐾 , stride is 1, and we are dealing
a normal convolution (no grouping, etc.).

An Example If batch size is 1, for the first convolution, we have

𝑁 = 1, 𝐶𝑖𝑛 = 1, 𝐻 = 32, 𝑊 = 32, 𝐶𝑜𝑢𝑡 = 6

The convolution operator (𝑓𝑐𝑜𝑣) transforms an input volume (𝑁, 𝐶𝑖𝑛, 𝐻, 𝑊)
to an output volume (𝑁, 𝐶𝑜𝑢𝑡, 𝐻, 𝑊) :

𝑓𝑐𝑜𝑛𝑣 : ℛ1×1×32×32 → ℛ1×6×32×32
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Convolution (ii)

An Example Weights for a convolutional layer has the shape
(𝐶𝑜𝑢𝑡, 𝐶𝑖𝑛, 𝐾, 𝐾), where 𝐾 is the kernel size.

Alternatively, you can view it as we have (𝐶𝑜𝑢𝑡 × 𝐶𝑖𝑛) independent filters
with each filter at the size of 𝐾 × 𝐾 .

We take the image patch and multiply it with a filter. We then slide it across
the whole input volume.
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Convolution (iii)

Striding For each filter, we then slide it across the whole input volume.

See in reading materials for more animations and mechanism about padding
and striding.
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Convolution (iv)

11/46



Convolution - The Actual Code
// output channels
for (co=0; co\<C\_out; co ++)
  // slide across the input volume
  for (h=0; h\<H; h++)
    for (w=0; w\<W; w++)
      // input channels
      for (ci=0; ci\<C\_in, ci++)
        // kernels
        for (kh=0; kh\<K; kh++)
          for (kw=0; kw\<K; kw++)
            Xnew[co,h,w] += X[ci,h+kh,w+kw]*w[ci,co,kh,kw]
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Linear
torch.nn.Linear simply performs

𝑦 = 𝑥𝑾 𝑇 + 𝑏

where, 𝑾 ∈ ℛ𝑖×𝑜 and 𝑖 and 𝑜 are the input and output feature dimensions.

Vision Building Blocks: Residual Connections A residual connection (or a
shortcut) provides an additional path for data to reach later parts of the
network without doing any additional computation.
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Vision Building Blocks: ResidualBlocks
• The parameterized layers only need to learn the different between the two.

• Gradient can have access to all layers, and it helps to mitigate the gradient
vanishing problem with deep networks.

• Depending on whether Conv0 is strided, a convolution block is added in
shortcut.
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Vision Building Blocks: ResidualBlocks (ii)

15/46



ResNet and image classification
• One can stack a few ResidualBlocks to build different ResNets (eg.

ResNet50, ResNet32)

• Image classification takes an image as an input and produce and produces a
one-hot vector to determine the class of the image.
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ResNet and image classification (ii)
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U-net and segmentation
• U-net builds residual connections in a special way, there is a shortcut at

every resolution, from its encoder to the decoder.

• Downsample uses MaxPool2D, and upsample uses ConvTranspose2d.
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Semantic segmentation
• Semantic Segmentation categorizes each pixel in an image into a class or

object.
• That’s why each the output has the same size as the input.
• Applications in Autonomous Driving (pedastrains, cars…), Robotics (object

positions…), Medical Imaging (tumor or not)…
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Vision Transformer
• A ‘kind of’ new idea of dealing with images.
• Instead of treating an image as an input volume, what if we make it a

sequence?
• Split an image or an input feature volume into fixed-size patches, linearly

embed each of them, so they are now a sequence!
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Natural Language Processing
Workloads



NLP Building Blocks
We will take a look at the modern NLP building blocks (not LSTMs or GRUs).

• Attention layers

• The original transformer model (6-layer)

• BERT

• LLaMa
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Tokens and Embeddings
The core idea is to transform texts to a sequence of vectors, so that a model
can consume as inputs.

• Tokenization: it divides a sentence into individual units, known as tokens.
Tokens can be words or punctuation marks.

• These tokens are then transformed into numbers.

• Map these numbers into continuous vectors, also called word embedding
(can be very tricky)!

Most existing word embeddings are learned using the Continuous Skip-gram
Modeling.

We will skip the detail of this training, since we only care about what
happens at inference time for now.
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Tokens and Embeddings
Why we need word embeddings?

In the latent space, we want

𝑥𝑝𝑒𝑜𝑝𝑙𝑒 − 𝑥𝑝𝑒𝑟𝑠𝑜𝑛 ≈ 𝑥𝑐𝑎𝑟𝑠 − 𝑥𝑐𝑎𝑟

But

𝑥𝑝𝑒𝑟𝑠𝑜𝑛 ≠ 𝑥𝑐𝑎𝑟

Interesting fact, in the word embedding latent space, because of the skip-gram
modeling, words such as ‘like’ and ‘hate’ are clustered very closely!

• Tokenize input text.

• Map them to numerical ids.

• Map each id to the vector space, 𝑿 ∈ ℛ𝑁×𝐷, where 𝑁  is the sequence
length and 𝐷 is the dimensionality of the word embedding.
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Tokens and Embeddings (ii)
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Attention
• Q, K, V are projected through a linear transformation with dimension 𝑑𝑘.

• They have size ℛ𝑁×𝑑𝑘 , where 𝑁  is the sequence length.

• softmax simply scales the output 𝑒𝑥𝑖

∑𝑛−1
𝑗=0 𝑒𝑥𝑗  to provide a probability.

𝐴𝑡𝑡𝑒𝑛(𝑄, 𝐾, 𝑉 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇

√𝑑𝑘
)𝑉

Let’s say 𝑑𝑘 = 1 and 𝑁 = 3 for simplicity, we have

𝑄 =
[
[
[𝑞0

𝑞1
𝑞2]

]
]

26/46



Attention (ii)

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇

√𝑑𝑘
) =

[
[
[𝑎00

𝑎10
𝑎20

𝑎01
𝑎11
𝑎21

𝑎02
𝑎12
𝑎22]

]
]

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇

√𝑑𝑘
)𝑉 =

[
[
[𝑎00𝑣0 + 𝑎01𝑣1 + 𝑎02𝑣2

𝑎10𝑣0 + 𝑎11𝑣1 + 𝑎12𝑣2
𝑎20𝑣0 + 𝑎21𝑣1 + 𝑎22𝑣2]

]
]

We simply computed a bunch of coefficients, controlled by learnable
parameters, to re-scale our 𝑉 !
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Attention: A Conceptual View

𝑉 =
(
((
( "I"

"like"
"football")

))
)

My result might be

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇

√𝑑𝑘
)𝑉 =

[
[
[0.01𝑣0 + 0.02𝑣1 + 0.97𝑣2

0.02𝑣0 + 0.03𝑣1 + 0.95𝑣2
0.03𝑣0 + 0.03𝑣1 + 0.96𝑣2]

]
]

All entry may now pay ‘attention’ to 𝑣2 (football)!
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Multi-head Attention
We normally have a number of attention heads in parallel, this is also known
as multi-head attention.

The parallelism in learning is similar to the number of parallel filter banks in
CNNs!
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Canonical Transfomer
• The transformer model has two parts, the encoder part and the decoder

part.

• Positional embedding adds the positional information to each token.

• Decoder takes not only encoded inputs but also the current output values.

• Mainly demonstrated on Machine Translation tasks (measured in BLEU
scores).
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Canonical Transfomer (ii)
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BERT
• Bidirectional Encoder Representations from Transformers.

• The same as the Transformer architecture, but only the encoder part,
duplicated many times.

• Uses MLM (masked language modeling) to pretrain the model and then
fine-tune on other tasks, this is known as the pre-trian and then fine-tune
paradigm.
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T5 models
• Similar to the Transformer architecture with both an encoder-decoder

structure, but much larger in size!

• The support of a longer sequence length because of the relative positional
encoding. Think about relative position between tokens instead of absolute
positioning. This would have to modify the self-attention mechanism
slightly, detail about this is in reading material.
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LLaMA
• Normally (but not always), Bidirectional models (trained with MLM) are

paired with encoder-decoder architecture.

• Decoder-only architecture are normally unidirectional (eg. GPT, OPT …).

• Uses CLM (causal language modeling) to pre-train the model.

• We then apply prompts to apply pre-trained models to downstream tasks in
a zero-shot manner. This is known as the pre-train and then prompting
paradigm.

• Will cover in more detail in the next lecture
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LLaMA (ii)
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Graph Representation Learning
Workloads



GNN Building Blocks
Graph Neural Networks (GNNs) are used to handle tasks that have graphs as
inputs.

• GCN: Graph Convolutional Networks
• GAT: Graph Attention Networks

are the most popular building blocks.
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Graph Learning
In graph representational learning, we are handling graph data.

• Graph-level tasks: predict certain properties of a graph, this is normally on
small-scale graphs (eg. proteins).

• Node/edge-level tasks: predict the properties of certain nodes and edges (eg.
recommendation systems).

There are also other graph tasks (such as graph generation).
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Graph Learning
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Graph Learning (ii)
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The Message Passing Framework
A graph is defined as 𝐺 = (𝒱, ℰ), where 𝒱 denotes the set of nodes, and ℰ ⊆
𝒱 × 𝒱 denotes the set of edges.

• 𝐴 ∈ ℝ|𝒱|×|𝒱| is the adjacency matrix, with each entry 𝑎𝑖𝑗 representing an
edge (if any) between nodes 𝑖 and 𝑗; note that this is different from the
conventional {0, 1}|𝒱|×|𝒱| adjacency matrix format, since there are different
types of bonds (i.e., single, double, triple, aromatic).

• 𝐻 ∈ ℝ|𝒱|×𝑑 is the feature matrix, 𝒉𝑖 ∈ ℝ𝑑 is the 𝑑-dimensional features of
node 𝑖.
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The Message Passing Framework
All the GNNs we consider can be abstracted as Message Passing Neural
Networks (MPNNs).

An MPNN operation iteratively updates the node features 𝒉(𝑙)
𝑖 ∈ ℝ𝑑 from

layer 𝑙 to layer 𝑙 + 1 via propagating messages through neighbouring nodes
𝑗 ∈ 𝒩𝑖:
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The Message Passing Framework
Both MESSAGE and UPDATE are learnable functions.

𝒩𝑖 = {𝑗 | (𝑖, 𝑗) ∈ ℰ} is the (1-hop) neighbourhood of node 𝑖

⨁ is a permutation-invariant local neighbourhood aggregation function,
such as sum, mean or max.

𝒉(𝑙+1)
𝑖 = UPDATE (𝒉(𝑙)

𝑖 , ⨁
𝑗∈𝒩𝑖

MESSAGE (𝒉(𝑙)
𝑖 , 𝒉(𝑙)

𝑗 , 𝒆𝑖𝑗))

The graph embedding 𝒉𝐺 ∈ ℝ𝑑 can be obtained via a READOUT function:

𝒉𝐺 = READOUT𝑖∈𝑽 (𝒉(𝑘)
𝑖 )
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Graph Convolutional Networks (GCN)
• 𝑐𝑖𝑗 is a normalisation constant for each edge ℰ𝑖𝑗 which originates from

using the symmetrically normalised adjacency matrix 𝑫−1
2 𝑨𝑫−1

2  with
𝑫𝑖𝑖 = ∑𝑗 𝐴𝑖𝑗 is the degree matrix.

• 𝑾 (𝑙) is a learnable weight matrix

• 𝜎 is a non-linear activation function (eg. ReLU)

𝒉(𝑙+1)
𝑖 = 𝜎( ∑

𝑗∈𝒩𝑖

𝑐𝑖𝑗𝑾 (𝑙)𝒉(𝑙)
𝑗 )

This is actually very similar to the convolution in computer vision!
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Graph Attention Networks
GAT applies attention-based neighbourhood aggregation as its aggregation
function to obtain sufficient expressive power.

∀𝑗 ∈ 𝒩𝑖, 𝛼𝑖𝑗 =
exp(LeakyReLU (𝒂[𝑾 𝒉𝑖 ‖ 𝑾 𝒉𝑗]))

∑𝑘∈𝒩𝑖
exp(LeakyReLU (𝒂[𝑾 𝒉𝑖 ‖ 𝑾 𝒉𝑘]))

‖ denotes concatenation and 𝒂 is a learnable weight vector for the attention.

𝒉(𝑙+1)
𝑖 = ‖𝐾

𝑘=1 𝜎( ∑
𝑗∈𝒩𝑖

𝛼𝑘
𝑖𝑗𝑾 𝑘𝒉(𝑙)

𝑗 )

This is actually very similar to the self-attention in NLP!
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Graph Attention Networks
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