
Understanding the workload
Cheng Zhang and Aaron Zhao, Imperial College London

Introduction

The rule of thumb
• People only care about the models at any given time.

‣ GPTs - (Transformer based, decoder-only)

‣ Diffusion (Image generation)

‣ CLIP - (Contrastive-learning)

‣ SAM - (Segmentation foundation model)

‣ Whisper (Neural ASR)

• You cannot trade-off model performance too much

‣ Common performance engineers logic is to get 10 × speed-up with a 5%
decrease in accuracy.

‣ 5% accuracy drop on standard image classification benchmarks mean you
use models that are from the previous generation!

3/46

Charactersitcs of workloads
The characteristics come from two aspects: the data and the model

I will breakdown the survey of different workload characteristics for different
fields, this includes

• Computer Vision

• Natural Language Processing

• Graph Representation Learning

I will go through them in a fairly fast pace, it is expected you do extra
readings following the links in the course wiki.

4/46

Computer Vision Workloads

Basic Building Blocks
We will mainly focus on tasks on 2D images.

Basic building blocks for CV networks are:

• Convolution

• Linear

We will later look at popular vision network building blocks

• Residual Blocks

• UNet

• Vision Transformer

We will look at the following tasks

• Classification

• Segmentation

6/46

Basic Building Blocks
Let’s unify our language, for each layer, we consider

• an input activation tensor (feature in), 𝑿𝒍 for layer 𝑙.

• the free parameters tensor (weights), 𝑾𝒍

• an output activation tensor (feature out), 𝑿𝒍+𝟏

7/46

Convolution
torch.nn.Conv2d takes input with size (𝑁, 𝐶𝑖𝑛, 𝐻, 𝑊), and outputs
(𝑁, 𝐶𝑜𝑢𝑡, 𝐻, 𝑊), let’s assume kernel size is 𝐾 , stride is 1, and we are dealing
a normal convolution (no grouping, etc.).

An Example If batch size is 1, for the first convolution, we have

𝑁 = 1, 𝐶𝑖𝑛 = 1, 𝐻 = 32, 𝑊 = 32, 𝐶𝑜𝑢𝑡 = 6

The convolution operator (𝑓𝑐𝑜𝑣) transforms an input volume (𝑁, 𝐶𝑖𝑛, 𝐻, 𝑊)
to an output volume (𝑁, 𝐶𝑜𝑢𝑡, 𝐻, 𝑊) :

𝑓𝑐𝑜𝑛𝑣 : ℛ1×1×32×32 → ℛ1×6×32×32

8/46

Convolution (ii)

An Example Weights for a convolutional layer has the shape
(𝐶𝑜𝑢𝑡, 𝐶𝑖𝑛, 𝐾, 𝐾), where 𝐾 is the kernel size.

Alternatively, you can view it as we have (𝐶𝑜𝑢𝑡 × 𝐶𝑖𝑛) independent filters
with each filter at the size of 𝐾 × 𝐾 .

We take the image patch and multiply it with a filter. We then slide it across
the whole input volume.

9/46

Convolution (iii)

Striding For each filter, we then slide it across the whole input volume.

See in reading materials for more animations and mechanism about padding
and striding.

10/46

Convolution (iv)

11/46

Convolution - The Actual Code
// output channels
for (co=0; co\<C_out; co ++)
 // slide across the input volume
 for (h=0; h\<H; h++)
 for (w=0; w\<W; w++)
 // input channels
 for (ci=0; ci\<C_in, ci++)
 // kernels
 for (kh=0; kh\<K; kh++)
 for (kw=0; kw\<K; kw++)
 Xnew[co,h,w] += X[ci,h+kh,w+kw]*w[ci,co,kh,kw]

12/46

Linear
torch.nn.Linear simply performs

𝑦 = 𝑥𝑾 𝑇 + 𝑏

where, 𝑾 ∈ ℛ𝑖×𝑜 and 𝑖 and 𝑜 are the input and output feature dimensions.

Vision Building Blocks: Residual Connections A residual connection (or a
shortcut) provides an additional path for data to reach later parts of the
network without doing any additional computation.

13/46

Vision Building Blocks: ResidualBlocks
• The parameterized layers only need to learn the different between the two.

• Gradient can have access to all layers, and it helps to mitigate the gradient
vanishing problem with deep networks.

• Depending on whether Conv0 is strided, a convolution block is added in
shortcut.

14/46

Vision Building Blocks: ResidualBlocks (ii)

15/46

ResNet and image classification
• One can stack a few ResidualBlocks to build different ResNets (eg.

ResNet50, ResNet32)

• Image classification takes an image as an input and produce and produces a
one-hot vector to determine the class of the image.

16/46

ResNet and image classification (ii)

17/46

U-net and segmentation
• U-net builds residual connections in a special way, there is a shortcut at

every resolution, from its encoder to the decoder.

• Downsample uses MaxPool2D, and upsample uses ConvTranspose2d.

18/46

Semantic segmentation
• Semantic Segmentation categorizes each pixel in an image into a class or

object.
• That’s why each the output has the same size as the input.
• Applications in Autonomous Driving (pedastrains, cars…), Robotics (object

positions…), Medical Imaging (tumor or not)…

19/46

Vision Transformer
• A ‘kind of’ new idea of dealing with images.
• Instead of treating an image as an input volume, what if we make it a

sequence?
• Split an image or an input feature volume into fixed-size patches, linearly

embed each of them, so they are now a sequence!

20/46

Natural Language Processing
Workloads

NLP Building Blocks
We will take a look at the modern NLP building blocks (not LSTMs or GRUs).

• Attention layers

• The original transformer model (6-layer)

• BERT

• LLaMa

22/46

Tokens and Embeddings
The core idea is to transform texts to a sequence of vectors, so that a model
can consume as inputs.

• Tokenization: it divides a sentence into individual units, known as tokens.
Tokens can be words or punctuation marks.

• These tokens are then transformed into numbers.

• Map these numbers into continuous vectors, also called word embedding
(can be very tricky)!

Most existing word embeddings are learned using the Continuous Skip-gram
Modeling.

We will skip the detail of this training, since we only care about what
happens at inference time for now.

23/46

Tokens and Embeddings
Why we need word embeddings?

In the latent space, we want

𝑥𝑝𝑒𝑜𝑝𝑙𝑒 − 𝑥𝑝𝑒𝑟𝑠𝑜𝑛 ≈ 𝑥𝑐𝑎𝑟𝑠 − 𝑥𝑐𝑎𝑟

But

𝑥𝑝𝑒𝑟𝑠𝑜𝑛 ≠ 𝑥𝑐𝑎𝑟

Interesting fact, in the word embedding latent space, because of the skip-gram
modeling, words such as ‘like’ and ‘hate’ are clustered very closely!

• Tokenize input text.

• Map them to numerical ids.

• Map each id to the vector space, 𝑿 ∈ ℛ𝑁×𝐷, where 𝑁 is the sequence
length and 𝐷 is the dimensionality of the word embedding.

24/46

Tokens and Embeddings (ii)

25/46

Attention
• Q, K, V are projected through a linear transformation with dimension 𝑑𝑘.

• They have size ℛ𝑁×𝑑𝑘 , where 𝑁 is the sequence length.

• softmax simply scales the output 𝑒𝑥𝑖

∑𝑛−1
𝑗=0 𝑒𝑥𝑗 to provide a probability.

𝐴𝑡𝑡𝑒𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇

√𝑑𝑘
)𝑉

Let’s say 𝑑𝑘 = 1 and 𝑁 = 3 for simplicity, we have

𝑄 =
[
[
[𝑞0

𝑞1
𝑞2]

]
]

26/46

Attention (ii)

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇

√𝑑𝑘
) =

[
[
[𝑎00

𝑎10
𝑎20

𝑎01
𝑎11
𝑎21

𝑎02
𝑎12
𝑎22]

]
]

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇

√𝑑𝑘
)𝑉 =

[
[
[𝑎00𝑣0 + 𝑎01𝑣1 + 𝑎02𝑣2

𝑎10𝑣0 + 𝑎11𝑣1 + 𝑎12𝑣2
𝑎20𝑣0 + 𝑎21𝑣1 + 𝑎22𝑣2]

]
]

We simply computed a bunch of coefficients, controlled by learnable
parameters, to re-scale our 𝑉 !

27/46

Attention: A Conceptual View

𝑉 =
(
((
("I"

"like"
"football")

))
)

My result might be

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇

√𝑑𝑘
)𝑉 =

[
[
[0.01𝑣0 + 0.02𝑣1 + 0.97𝑣2

0.02𝑣0 + 0.03𝑣1 + 0.95𝑣2
0.03𝑣0 + 0.03𝑣1 + 0.96𝑣2]

]
]

All entry may now pay ‘attention’ to 𝑣2 (football)!

28/46

Multi-head Attention
We normally have a number of attention heads in parallel, this is also known
as multi-head attention.

The parallelism in learning is similar to the number of parallel filter banks in
CNNs!

29/46

Canonical Transfomer
• The transformer model has two parts, the encoder part and the decoder

part.

• Positional embedding adds the positional information to each token.

• Decoder takes not only encoded inputs but also the current output values.

• Mainly demonstrated on Machine Translation tasks (measured in BLEU
scores).

30/46

Canonical Transfomer (ii)

31/46

BERT
• Bidirectional Encoder Representations from Transformers.

• The same as the Transformer architecture, but only the encoder part,
duplicated many times.

• Uses MLM (masked language modeling) to pretrain the model and then
fine-tune on other tasks, this is known as the pre-trian and then fine-tune
paradigm.

32/46

T5 models
• Similar to the Transformer architecture with both an encoder-decoder

structure, but much larger in size!

• The support of a longer sequence length because of the relative positional
encoding. Think about relative position between tokens instead of absolute
positioning. This would have to modify the self-attention mechanism
slightly, detail about this is in reading material.

33/46

LLaMA
• Normally (but not always), Bidirectional models (trained with MLM) are

paired with encoder-decoder architecture.

• Decoder-only architecture are normally unidirectional (eg. GPT, OPT …).

• Uses CLM (causal language modeling) to pre-train the model.

• We then apply prompts to apply pre-trained models to downstream tasks in
a zero-shot manner. This is known as the pre-train and then prompting
paradigm.

• Will cover in more detail in the next lecture

34/46

LLaMA (ii)

35/46

Graph Representation Learning
Workloads

GNN Building Blocks
Graph Neural Networks (GNNs) are used to handle tasks that have graphs as
inputs.

• GCN: Graph Convolutional Networks
• GAT: Graph Attention Networks

are the most popular building blocks.

37/46

Graph Learning
In graph representational learning, we are handling graph data.

• Graph-level tasks: predict certain properties of a graph, this is normally on
small-scale graphs (eg. proteins).

• Node/edge-level tasks: predict the properties of certain nodes and edges (eg.
recommendation systems).

There are also other graph tasks (such as graph generation).

38/46

Graph Learning

39/46

Graph Learning (ii)

40/46

The Message Passing Framework
A graph is defined as 𝐺 = (𝒱, ℰ), where 𝒱 denotes the set of nodes, and ℰ ⊆
𝒱 × 𝒱 denotes the set of edges.

• 𝐴 ∈ ℝ|𝒱|×|𝒱| is the adjacency matrix, with each entry 𝑎𝑖𝑗 representing an
edge (if any) between nodes 𝑖 and 𝑗; note that this is different from the
conventional {0, 1}|𝒱|×|𝒱| adjacency matrix format, since there are different
types of bonds (i.e., single, double, triple, aromatic).

• 𝐻 ∈ ℝ|𝒱|×𝑑 is the feature matrix, 𝒉𝑖 ∈ ℝ𝑑 is the 𝑑-dimensional features of
node 𝑖.

41/46

The Message Passing Framework
All the GNNs we consider can be abstracted as Message Passing Neural
Networks (MPNNs).

An MPNN operation iteratively updates the node features 𝒉(𝑙)
𝑖 ∈ ℝ𝑑 from

layer 𝑙 to layer 𝑙 + 1 via propagating messages through neighbouring nodes
𝑗 ∈ 𝒩𝑖:

42/46

The Message Passing Framework
Both MESSAGE and UPDATE are learnable functions.

𝒩𝑖 = {𝑗 | (𝑖, 𝑗) ∈ ℰ} is the (1-hop) neighbourhood of node 𝑖

⨁ is a permutation-invariant local neighbourhood aggregation function,
such as sum, mean or max.

𝒉(𝑙+1)
𝑖 = UPDATE (𝒉(𝑙)

𝑖 , ⨁
𝑗∈𝒩𝑖

MESSAGE (𝒉(𝑙)
𝑖 , 𝒉(𝑙)

𝑗 , 𝒆𝑖𝑗))

The graph embedding 𝒉𝐺 ∈ ℝ𝑑 can be obtained via a READOUT function:

𝒉𝐺 = READOUT𝑖∈𝑽 (𝒉(𝑘)
𝑖)

43/46

Graph Convolutional Networks (GCN)
• 𝑐𝑖𝑗 is a normalisation constant for each edge ℰ𝑖𝑗 which originates from

using the symmetrically normalised adjacency matrix 𝑫−1
2 𝑨𝑫−1

2 with
𝑫𝑖𝑖 = ∑𝑗 𝐴𝑖𝑗 is the degree matrix.

• 𝑾 (𝑙) is a learnable weight matrix

• 𝜎 is a non-linear activation function (eg. ReLU)

𝒉(𝑙+1)
𝑖 = 𝜎(∑

𝑗∈𝒩𝑖

𝑐𝑖𝑗𝑾 (𝑙)𝒉(𝑙)
𝑗)

This is actually very similar to the convolution in computer vision!

44/46

Graph Attention Networks
GAT applies attention-based neighbourhood aggregation as its aggregation
function to obtain sufficient expressive power.

∀𝑗 ∈ 𝒩𝑖, 𝛼𝑖𝑗 =
exp(LeakyReLU (𝒂[𝑾 𝒉𝑖 ‖ 𝑾 𝒉𝑗]))

∑𝑘∈𝒩𝑖
exp(LeakyReLU (𝒂[𝑾 𝒉𝑖 ‖ 𝑾 𝒉𝑘]))

‖ denotes concatenation and 𝒂 is a learnable weight vector for the attention.

𝒉(𝑙+1)
𝑖 = ‖𝐾

𝑘=1 𝜎(∑
𝑗∈𝒩𝑖

𝛼𝑘
𝑖𝑗𝑾 𝑘𝒉(𝑙)

𝑗)

This is actually very similar to the self-attention in NLP!

45/46

Graph Attention Networks

46/46

	Introduction
	The rule of thumb
	Charactersitcs of workloads

	Computer Vision Workloads
	Basic Building Blocks
	Basic Building Blocks
	Convolution
	Convolution - The Actual Code
	Linear
	Vision Building Blocks: ResidualBlocks
	ResNet and image classification
	U-net and segmentation
	Semantic segmentation
	Vision Transformer

	Natural Language Processing Workloads
	NLP Building Blocks
	Tokens and Embeddings
	Tokens and Embeddings
	Attention
	Attention: A Conceptual View
	Multi-head Attention
	Canonical Transfomer
	BERT
	T5 models
	LLaMA

	Graph Representation Learning Workloads
	GNN Building Blocks
	Graph Learning
	Graph Learning
	The Message Passing Framework
	The Message Passing Framework
	The Message Passing Framework
	Graph Convolutional Networks (GCN)
	Graph Attention Networks
	Graph Attention Networks

