
Architectural Optimizations
Aaron Zhao, Imperial College London

Introduction

Efficiency is a key metric in evaluating performance

• Re-design the basic operands
• Architecture level re-engineering
• System-level re-structuring

Most of these modifications are at the algorithmic level!

How can we modify the networks to make them more efficient?

I will go through three pieces of work in detail

• Early versions of MobileNet – Depthwise Separable Convolution
• Longformer – A local windowed attention
• MobileViT – Hybrid Models
• LLaMA – KV Cache

3/28

MobileNet

Convolution As we have mentioned before, (𝑁,𝐶𝑖𝑛, 𝐶𝑜𝑢𝑡,𝐾,𝐻,𝑊) roughly
defines the operation.

Parameters: 𝐶𝑖𝑛 ×𝐶𝑜𝑢𝑡 ×𝐾 ×𝐾

5/28

Depthwise Separable Convolution

6/28

Depthwise Separable Convolution (ii)
The core idea is basically decomposition.

Depthwise Separable Convolution is made of a depthwise convolution and a
pointwise convolution.

• Depthwise Convolution: grouped convoltuion, where the group size equals
to the number of channels.

• Pointwise Convolution: convolution with a kernel size of 1.

Convolution Parameters: 𝐶𝑖𝑛 ×𝐶𝑜𝑢𝑡 ×𝐾 ×𝐾

Depthwise Separable Convolution Parameters: 𝐶𝑖𝑛 ×𝐾 ×𝐾 +𝐶𝑖𝑛 ×𝐶𝑜𝑢𝑡

7/28

Depthwise Separable Convolution

8/28

Depthwise Separable Convolution (ii)
Multiple ReLU and BN layers are added to make up the block.

BN: Batch Normalization.

You should be comfortable with reading an architecture table like this.
9/28

Longformer

The context length problem
When dealing with a Transformer model, we face the 𝑁2 curse from the full
attention computation, where 𝑁 is the sequence length.

Recall that

𝐴𝑡𝑡𝑒𝑛(𝑄,𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾
𝑇

√𝑑𝑘
)𝑉

If the context length is large, this means the sequence length 𝑁 is large.

We have the operation 𝑄𝐾𝑇 and 𝑄,𝐾 ∈ ℛ𝑁×𝑑, the complexity of this
operation is then 𝑂(𝑁2).

11/28

Longformer

• Use dilated sliding window attention to compute a small number of
diagonals.

• Global attention on pre-selected fixed entries (based on certain heuristics).

• Requires a CUDA implementation to get a true speedup.

12/28

What is dilation?

• An operation that was firstly used in convolutions (dilated convolutions).
• We skip certain middle points in the computation.
• Images are showing dilation factor (𝑖) equals to 1, 2 and 4. Larger dilations

have a larger receptive field.

13/28

Longformer Performance

• Real performance confirms with the theory: 𝑂(𝑁) scaling in memory.

• Different implementation may introduce different time. CUDA kernel is
implemented using TVM, it might be faster if native CUDA is used.

Re-design the basic operands

• Philosophy: use cheaper operators to approximate the standard operators

• Rely on SGD training from scratch to empirically verify performance.

14/28

MobileViT

The ViT structure

16/28

The ViT structure (ii)
MobileViT ViTs are more computationally demanding than CNNs.

• ViT is more heavy-weight. ViT-B/16 vs. MobileNetv3: 86 vs. 7.5 million
parameters.

• More performing (higher accuracy) at a high parameter count does not
necessarily mean it is performant at low parameter count.

‣ For a parameter budget of about 5-6 million, DeIT is 3% less accurate than
MobileNetv3.

• We have more energy-efficient neural operators in CNNs (eg. Depthwise
Seperable Convolution!).

The proposed solution: mix ViT layers with convolutions

17/28

MobileViT

Add ViT operation after convolution blocks.

18/28

MobileViT

The original value has 𝑿 ∈ ℛ𝐻×𝑊×𝐶

• Transform 𝑿 ∈ ℛ𝐻×𝑊×𝐶 to patches 𝑿 ∈ ℛ𝐻×𝑊×𝑑 using convolutions.

• Unfold to 𝑿𝑈 ∈ ℛ𝑁×𝑃×𝑑 and pass through the Transformer blocks.

• Fold back to 𝑿𝐹 ∈ ℛ𝐻×𝑊×𝑑.

• Another convolution block to push back to 𝑿𝐶 ∈ ℛ𝐻×𝑊×𝐶 .

19/28

MobileViT final fusion process
• Concatenate 𝑿 ∈ ℛ𝐻×𝑊×𝐶 and 𝑿𝐶 ∈ ℛ𝐻×𝑊×𝐶 .

• [𝑿,𝑿𝐶] → 𝑿𝑜𝑢𝑡

• 𝑿𝑜𝑢𝑡 ∈ ℛ𝐻×𝑊×𝐶

• Fusion of the two neural operators (convolution and vit).
• Parameter-efficient convolutions for local information.
• ViT structure for global information.

20/28

Architecture level re-engineering

• Pick and match different operators in an informed way.
• We will look at more of this style of optimization later (Network

Architecture Search).
• Use the Pareto Frontier to judge whether you are doing better!

21/28

KV Caching

Decoder-only transformers
If you actually think about how is an output sentence generated, you might
find that this is an iterative process:

i = 0
while out_token != token_eos:
 logits, _ = model(in_tokens)
 out_token = torch.argmax(
 logits[-1, :], dim=0, keepdim=True),
 in_tokens=torch.cat((in_tokens, out_token), 0)
 text = tokenizer.decode(in_tokens)
 print(f'step i input: text', flush=True)
 i += 1

23/28

Decoder-only transformers
• For each input (question sentence), we generate a single token.
• We then append this output token to the input token.
• We use the appended sequence to run inference again until we see an ‘EOS’

token.

step 0
Lionel Messi is a player
step 1
Lionel Messi is a player who
step 2
Lionel Messi is a player who has ...

Input: Lionel Messi is a
Output: Lionel Messi is a player who has been a key part of the
team's success.

This is very expensive, the compute cost scales quadratically with sequence
length!

24/28

The idea of Caching
However, if we think carefully, when computing the 𝑖th token, we have
already generated the previous intermediate values for all previous (0 to 𝑖 −
1) tokens.

Since the decoder is causal (i.e., the attention of a token only depends on its
preceding tokens), at each generation step we are recalculating the same
previous token attention, when we actually just want to calculate the
attention for the new token.

Note, this is CLM (Casual Language Modeling), where we have a CLM mask
to mask out the upper parts in 𝑄𝐾𝑇 .

25/28

The idea of Caching (ii)

Classic compute

1. Compute 𝑄1𝐾1

2. Compute 𝑄1𝐾1, 𝑄2𝐾1, 𝑄2𝐾2

3. Compute 𝑄1𝐾1, 𝑄2𝐾1, 𝑄2𝐾2, 𝑄3𝐾1, 𝑄3𝐾2, 𝑄3𝐾3

26/28

The idea of Caching (iii)

Compute with the KV cache

1. Compute 𝑄1𝐾1, put this into cache

2. Take 𝑄1𝐾1 from cache, compute 𝑄2𝐾1, 𝑄2𝐾2, add 𝑄2𝐾1, 𝑄2𝐾2 into
cache

3. Take 𝑄1𝐾1, 𝑄2𝐾1, 𝑄2𝐾2 from cache, compute 𝑄3𝐾1, 𝑄3𝐾2, 𝑄3𝐾3, add
𝑄3𝐾1, 𝑄3𝐾2, 𝑄3𝐾3 into cache

27/28

Summary
• Re-design the basic operands

‣ Depthwise Separable Convolutions

‣ Longformer

• Architecture-level re-engineering

‣ MobileVit

• System-level re-structuring

‣ KV Caching in LLaMA

28/28

	Introduction
	MobileNet
	Depthwise Separable Convolution
	Depthwise Separable Convolution

	Longformer
	The context length problem
	Longformer
	What is dilation?
	Longformer Performance

	MobileViT
	The ViT structure
	MobileViT
	MobileViT
	MobileViT final fusion process
	Architecture level re-engineering

	KV Caching
	Decoder-only transformers
	Decoder-only transformers
	The idea of Caching
	Summary

