Automated Machine Learning - An
Introduction to Network
Architecture Search

Aaron Zhao, Imperial College London

Introduction

Introduction

During the last lecture, we explored optimizing our network through
informed manual adjustments. Today, we’ll delve into Automated Machine
Learning and the process of Network Architecture Search.

The complete AutoML pipeline consists of:

« Data preparation and automated data cleaning

« Feature Engineering

« Model selection or Network Architecture Search

« Hyperparameter tuning ...

3/33

Network Architecture Search

Core idea: Can we design the best network architecture purely from
observing the data?

We want to pick the optimal architecture a € A from a set of architectures A.

At the same time, we want to pick the optimal parameters w" (a) for the
architecture a.

minae./l’cval (w* (CL), a)

w,a))

staw' (a) = argmin, (£, qim

4/33

Search Space

What is a search space?

We normally have to search through a given set of architectures A, which is
known as the search space.

« Global search space
» Modular search space

» Combined search space

6/33

Global search space

=
=
- 5
=) |8
N ik
W\, Ef
| IS
/
o/
{
=

7/33

Global search space (ii)

A global search space considers directly all possible elements (search options)
in the DAG (Directed Acyclic Graph): this is an extremely large search space,
not even tractable.

Modular search space

« Search a critical component in the search space, and then duplicate that
component based on heuristics (DARTS).

« Template and backbone template with heuristics, search for the design
options in the backbone (MobileNet-V3).

8/33

The DARTS search space
« 6-node DAG as a Cell
» two input nodes
» one output node
» four intermediate data nodes
+ Nodes are connected by an operation
» conv3x3
» convixl
» skip, relu, sigmoid, tanh and so on.

« roughly 10° options

9/33

The DARTS search space (ii)

10/33

The DARTS search space

« Normal Cell (no resolution change)

+ Reduction Cell (resolution changes with striding/pooling)

sep_conv_3x3

max_pool_3x3

max_pool_3x3

Figure 5: Reduction cell learned on CIFAR-10.

11/33

The DARTS search space (ii)

« Searched on CIFAR10 with one normal and one reduction cell.
+ There exists an approximation/belief that architectures learned on CIFAR10

are generally transferrable to other image tasks!
« Stack the searched cell multiple times to build bigger networks on

ImageNet.
« There exists a heuristics-defined stacking pattern! Figure is from ENAS but

DARTS does the same thing.

o bl o i
5 0 3) 3) 3 o
= 05 0= 0 5 0 = 23S, 0 & =+
] > @ > @ > © > © > @ > O >
Q@ 25 o) 25 ® A s ® A 3
- < — = - < = - < — o
[0} Q
o o o %
= =] =]
x x X
= = =

12/33

Combined search space

+ Micro-architecture design: the design of a single cell, through the modular
search space.

+ Macro-architecture design: how these cells should be connected, through
the global search space.

+ The decomposition makes the total search space smaller and more tractable.

Combined search space Combined search space

Controller T P’

GraphBlock —> GraphBlock

OutLayerPPred

13/33

Combined search space (ii)

pPI

£¢'ﬂ¢

‘ Llnear ‘ Attention . R
Layer _TMechamsm *>< Aggregation H Activation P
A

I
Messages from

Neighbours

BlockO

Block1

Block2

@@
@.....@...__Q

Block1Y B|ock2* Block3 ¥

14/33

Search Strategies

What is a search strategy?

The core-algorithm used to conduct the search.

+ Reinforcement learning
« Gradient-based optimization
« Evolutionary algorithm

« Performance estimator

16/33

Reinforcement Learning based NAS (NASNet)

A controller, parameterized by 6, performs a list of actions (ay, a;...ar_;) to
design the architecture of a child network.

The child network achieves an accuracy R on a held-out validation dataset.

Concretely, the controller is optimizing a reward:
J(QC) = EP({G’Ov"'vaT—l}vac) [R]

The reward signal R is non-differentiable, so we use a policy gradient to
iteratively update 6,

h
*i
L

1 M-
logP Qay | {at 1 ao},G)
k=0 t

Il
=}

Where M is the number of different architectures that the controller samples
in one batch and T is the number of hyperparameters our controller has to
predict to design a neural network architecture.

17/33

Reinforcement Learning based NAS (NASNet) (ii

This is slightly different from standard RL setup since there is only basically
two states (start and finish) in the trajectory.

It requires a full-training run to obtain R, so this is very expensive!

85 1

80

accuracy (precision @1)

65

| NASNet-A (5 @ 1538)

75

70 A

NASNet-A (7 @ 1920).
|}

e '.Xceprian
Ingéption-v3
° Inception-v2
L
INASNet-A (4 @ 1056)
! ShuffleNet

MobileNet
® inception-v1

ception-ResNet-v2

NASNet-A (6 @ 4032)
a

°- "':‘5PN-131 SENet
PolyNet ®p Noxt-101

i
Inception-v4

ResNet-152
L]

VGG-16

0 10000

20000 30000 40000

Mult-Add operations (millions)

18/33

Gradient-based NAS (DARTS)

The problem with RL-based NAS is that it is hard for the controller to receive
gradients that relates to the child network accuracy.

But what if we can make the operators differentiable?
We associate each operator with a trainable parameter:

Let O be a set of candidate operators (eg. convolution, max pool ...), To make
a continuous search space, one can relax the discrete categorical distribution:

(,9)
() _ exp(ozo)
o () (;) Zo/eo eg;p<afj,’j)> o(z)

The operation mixing weights for a pair of nodes (i, j) are parameterized by a
vector a3, j) of dimension |O|.

Translate this to words: weighting each operator using trainable o values.

19/33

Gradient-based NAS (DARTS)

+ Update architecture « by descending VL .;(w — &V, Ly i (W, @), @), € is
zero for first order optimization)

+ Update weights w by descending V , Ly .., (w, &)
+ Derive the final architecture based on the learned «.
Dual-level optimization using SGD.

Gradient-based NAS (DARTS) provides a significant time reduction, since now
we run search on the cell-based space only once! There is now no need for
evaluating each child network

20/33

Gradient-based NAS (DARTS) (ii

B e R R —_———

e

P ——

Architecture Test Error (%) Params +x Search Cost Search
top-I top-5 ™) (M) (GPU days) Method
Inception-v1 (Szegedy et al., 2015) 30.2 10.1 6.6 1448 - manual
MobileNet (Howard et al., 2017) 294 10.5 4.2 569 - manual
ShuffleNet 2x (g = 3) (Zhang et al., 2017) 26.3 - ~5 524 - manual
NASNet-A (Zoph et al., 2018) 26.0 8.4 53 564 2000 RL
NASNet-B (Zoph et al., 2018) 27.2 8.7 53 488 2000 RL
NASNet-C (Zoph et al., 2018) 275 9.0 49 558 2000 RL
AmoebaNet-A (Real et al., 2018) 25.5 8.0 5.1 555 3150 evolution
AmoebaNet-B (Real et al., 2018) 26.0 8.5 53 555 3150 evolution
AmoebaNet-C (Real et al., 2018) 243 7.6 6.4 570 3150 evolution
PNAS (Liu et al., 2018a) 25.8 8.1 5.1 588 ~225 SMBO
DARTS (searched on CIFAR-10) 26.7 8.7 4.7 574 4 gradient-based

21/33

Evolutionary Algorithm (OFA)

However, gradient-based methods suffer from the following problems
» Large GPU VRAM usage (Single-path method)

« Is the ranking on a proxy dataset reliable?

« Gradient interference (PC-DARTS)

« No awareness about the deployment device and scenarios

22/33

Evolutionary Algorithm (OFA)

What if we train a supernet, and subsample it?

train a once-for-all network B Previous: O(N) design cost
'l Ours: O(1) design cost

Design Cost

LA}Clallzedlsub-nets\
> 16x~1300x

reduction
o o o o—
0 20 40 60 80

J direct deploy |, (no retrain) Number of Deployment Scenarlas

anp
EEE Tiny Al *-D HeE] ‘E]
Cloud Al

Guann A
(AloT) Different Hardware / Constraint

Mobile Al

23/33

Evolutionary Algorithm (OFA) (ii)

Evolutionary Algorithm (OFA) Design a large supernet that supports sub-
sampling in various dimensions

« Kernels
« Channels
« Layers
7x7 1
% 3x3 unlt i unit i o1 unit i
-» > ’
Transform Transform 02
| 03
2"56;‘;’5‘ "ga;gx train with full depth shrink the depth shrink the depth

24/33

Evolutionary Algorithm (OFA) (iii)

e
—_—
e
e

channel
importance

0.02
channel | 0.15 |reorg.

train with full width

sorting 0.85
0.63
O1

channel

0.82
channel

importance

channel

reorg.

sorting 0.1
0.46

i
e
—
i

02

O1
progressively shrink the width

O3

02

’
i sorting
e
e

O1
progressively shrink the width

Evolutionary Algorithm (OFA) uses an evolutionary algorithm to traverse the

whole search space.

of individuals, and evaluate their performance

Initialization and Evaluation: At the start, generate a random population

Selection: Individuals are selected based on their fitness scores.

Crossover: Selected individuals pair and exchange parts of their structure,
creating a new individual called offspring. This process is also known as
recombination or mating.

25/33

Evolutionary Algorithm (OFA) (iv)

+ Mutation: Offspring are altered randomly to introduce variability in the
population. This prevents the genetic algorithm from stagnating at local
optima.

+ Replacement: The population is updated with the new offspring, usually
replacing the least fit individuals. The algorithm then goes back to the
evaluation step, creating a loop.

Evolutionary Algorithm (OFA) Do the search with different hardware targets,
use the latency and accuracy to build a fitness score

26/33

Evolutionary Algorithm (OFA) (v)

€xe Lan

94 Bujjood

EXE AUOD

I

_

164x164

1).

(a) 4.1ms latency on Xilinx ZU3EG (batch size

04 Bujjood

SXs van

XL yaN

SXS van

SXs vain

SXs van

£X€ Au0

(b) 10.9ms latency on Intel Xeon CPU (batch size = 1).

94 Bujjood

SXs eaiN

XL 98N

SXs eaiN

64).

(c) 14.9ms latency on NVIDIA 1080Ti (batch size

27/33

Speedy Performance Estimator
All previous methods require training of one or more networks.
Can we predict the performance without or with minimal training?

« Learning curve extrapolation: extrapolating the validation accuracy
learning curve via a parameteric model.

« Zero-cost proxies: assessing the generalizability of an architecture with a
single forward pass of a single minibatch of data

« Subset selection: Training the architecture on a subset of the data

28/33

Speedy Performance Estimator (ii)

00 0o

% oo © o_ o

e®ee0%

og ®
= Data . .
—— Weibul
—— Log log linear
—— Log power
—— Janoschek (]
{::;iilll ..

Epochs

Accuracy

Learning Cgrve Zero-Cost Proxies Subset Selection
Extrapolation

An example performance predictor can be the following:

Let L denote a loss function, f,(z) the output of a neural network f with
input x and parameters 6, and let 6, ; denote the parameters of the network
after ¢t epochs and ¢ minibatches of SGD.

29/33

Speedy Performance Estimator (iii)

After training the network for 1" epochs, we sum the training losses collected
so far to get the following Training Speed Estimate (TSE)

T |1 3B
TSE = ; [E gL(f%,i(wz‘)vyi)]

The idea is then use this for evaluating the sub-networks, since it gets a better
rank correlation performance usually.

Performance Predictor (NASWOT): Or you can simply take a number of
networks and evaluate all of them using these low-fidelity proxies!

30/33

Speedy Performance Estimator (iv)

Method Search (s) CIFAR-10 CIFAR-100 ImageNet-16-120
validation test validation test validation test

(a) NAS-Bench-201

Non-weight sharing
REA 12000 91.19+0.31 93.92+0.30 71.81+1.12 71.84£0.99 45.15£0.89 45.54+1.03
RS 12000 90.93+0.36 93.70+0.36 70.93+1.09 71.04+1.07 44.45+1.10 44.57+1.25
REINFORCE 12000 91.09£0.37 93.85+0.37 71.61£1.12 71.71£1.09 45.05+1.02 45.24+1.18
BOHB 12000 90.82+0.53 93.61+0.52 70.74+1.29 70.85+1.28 44.26+£1.36 44.42+1.49

Weight sharing
RSPS 7587 84.16+1.69 87.66+1.69 59.00+4.60 58.33+4.34 31.56+3.28 31.14+3.88
DARTS-V1 10890 39.77+0.00 54.30+0.00 15.03+0.00 15.61+0.00 16.43+0.00 16.32+0.00
DARTS-V2 29902 39.77+0.00 54.30+0.00 15.03£0.00 15.6140.00 16.43£0.00 16.32+0.00
GDAS 28926 90.00+0.21 93.51+0.13 71.14+0.27 70.61+0.26 41.70+1.26 41.84+0.90
SETN 31010 82.25+5.17 86.19+4.63 56.86+7.59 56.87+£7.77 32.5443.63 31.90+4.07
ENAS 13315 39.77+0.00 54.30+0.00 15.0340.00 15.61+£0.00 16.43+0.00 16.3240.00
Training-free

NASWOT (N=10) 3.05 89.14+1.14 9244+ 113 68.50 £2.03 68.62 +2.04 41.09 £3.97 41314411
NASWOT (8=100) 30.01 89.55+£0.89 92.81£0.99 69.35+1.70 69.48 = 1.70 42.81 £3.05 43.10£3.16
NASWOT (N=1000) 306.19 89.69 £0.73 92.96 + 0.81 69.86 +1.21 69.98 & 1.22 43.95 £2.05 44.44+2.10
Random N/A 8320+ 1328 86.61 & 13.46 60.70 + 12.55 60.83 + 12.58 3334+939 33.13£9.66
Optimal (N=10) N/A 89.92+0.75 93.06 +0.59 69.61 +1.21 69.76 + 1.25 43.11 £1.85 4330+ 1.87
Optimal (N=100) N/A 91.05+028 93.84+0.23 71.45+0.79 71.56 +£0.78 4537 £0.61 45.67 £0.64
AREA 12000 91.20+027 - 71.95+099 - 4570 +£1.05 -

(b) NATS-Bench SSS

Non-weight sharing
REA 12000 90.37+0.20 93.22+0.16 70.23+0.50 70.11+0.61 45304+0.69 45.54+0.92
RS 12000 90.10£0.26 93.03£0.25 69.57+0.57 69.72+0.61 45.01+£0.74 45.42+0.86
REINFORCE 12000 90.25+0.23 93.16+0.21 69.84+0.59 69.96+0.57 45.06+£0.77 45.24+1.18
BOHB 12000 90.07+0.28 93.01+0.24 69.75+0.60 69.90+0.60 45.11+0.69 45.56+0.81
NASWOT (N=10) 3.02 88.95+0.88 88.66 +0.90 64.55+4.57 64.54 +£4.70 40.22 +£3.73 4048 +£3.73
NASWOT (N=100) 32.36 89.68 + 0.51 89.38 + 0.54 66.71£3.05 66.68 & 3.25 42.68 £2.58 43.11 £2.42
NASWOT (N=1000) 248.23 90.14£030 93.10 £ 0.31 68.96 + 1.54 69.10 + 1.61 44.57 £1.48 45.08 = 1.55

31/33

Speedy Performance Estimator (v)

Is this a solved problem?

Well, Yes and No

« Search spaces are normally manually defined!

« Low-fidelity methods normally work at small search spaces.

« Many of the search methods actually overfit to the search space!

32/33

Summary

« Search Spaces:
» Global
» Modular
» Combined

« Search Strategies
» Reinforcement learning
» Gradient-based optimization
» Evolutionary algorithm
» Performance estimators

33/33

	Introduction
	Introduction
	Network Architecture Search

	Search Space
	What is a search space?
	Global search space
	The DARTS search space
	The DARTS search space
	Combined search space

	Search Strategies
	What is a search strategy?
	Reinforcement Learning based NAS (NASNet)
	Gradient-based NAS (DARTs)
	Gradient-based NAS (DARTs)
	Evolutionary Algorithm (OFA)
	Evolutionary Algorithm (OFA)
	Speedy Performance Estimator
	Summary

