
Automated Machine Learning - An
Introduction to Network
Architecture Search
Aaron Zhao, Imperial College London

Introduction

Introduction
During the last lecture, we explored optimizing our network through
informed manual adjustments. Today, we’ll delve into Automated Machine
Learning and the process of Network Architecture Search.

The complete AutoML pipeline consists of:

• Data preparation and automated data cleaning

• Feature Engineering

• Model selection or Network Architecture Search

• Hyperparameter tuning …

3/33

Network Architecture Search
Core idea: Can we design the best network architecture purely from
observing the data?

We want to pick the optimal architecture 𝑎 ∈ 𝒜 from a set of architectures 𝒜.

At the same time, we want to pick the optimal parameters 𝑤*(𝑎) for the
architecture 𝑎.

𝑚𝑖𝑛𝑎∈𝒜ℒ𝑣𝑎𝑙(𝑤*(𝑎), 𝑎)

𝑠.𝑡.𝑤*(𝑎) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤(ℒ𝑡𝑟𝑎𝑖𝑛(𝑤, 𝑎))

4/33

Search Space

What is a search space?
We normally have to search through a given set of architectures 𝒜, which is
known as the search space.

• Global search space

• Modular search space

• Combined search space

6/33

Global search space

7/33

Global search space (ii)
A global search space considers directly all possible elements (search options)
in the DAG (Directed Acyclic Graph): this is an extremely large search space,
not even tractable.

Modular search space

• Search a critical component in the search space, and then duplicate that
component based on heuristics (DARTS).

• Template and backbone template with heuristics, search for the design
options in the backbone (MobileNet-V3).

8/33

The DARTS search space
• 6-node DAG as a Cell

‣ two input nodes

‣ one output node

‣ four intermediate data nodes

• Nodes are connected by an operation

‣ conv3x3

‣ conv1x1

‣ skip, relu, sigmoid, tanh and so on.

• roughly 109 options

9/33

The DARTS search space (ii)

10/33

The DARTS search space
• Normal Cell (no resolution change)

• Reduction Cell (resolution changes with striding/pooling)

11/33

The DARTS search space (ii)
• Searched on CIFAR10 with one normal and one reduction cell.
• There exists an approximation/belief that architectures learned on CIFAR10

are generally transferrable to other image tasks!
• Stack the searched cell multiple times to build bigger networks on

ImageNet.
• There exists a heuristics-defined stacking pattern! Figure is from ENAS but

DARTS does the same thing.

12/33

Combined search space
• Micro-architecture design: the design of a single cell, through the modular

search space.
• Macro-architecture design: how these cells should be connected, through

the global search space.
• The decomposition makes the total search space smaller and more tractable.

Combined search space Combined search space

13/33

Combined search space (ii)

,

, 14/33

Search Strategies

What is a search strategy?
The core-algorithm used to conduct the search.

• Reinforcement learning

• Gradient-based optimization

• Evolutionary algorithm

• Performance estimator

16/33

Reinforcement Learning based NAS (NASNet)
A controller, parameterized by 𝜃𝑐 performs a list of actions (𝑎0, 𝑎1...𝑎𝑇−1) to
design the architecture of a child network.

The child network achieves an accuracy 𝑅 on a held-out validation dataset.

Concretely, the controller is optimizing a reward:

𝐽(𝜃𝑐) = 𝐸𝑃({𝑎0,...,𝑎𝑇−1},𝜃𝑐)[𝑅]

The reward signal 𝑅 is non-differentiable, so we use a policy gradient to
iteratively update 𝜃𝑐

𝐽(𝜃𝑐) =
1
𝑀

∑
𝑀−1

𝑘=0
∑
𝑇−1

𝑡=0
𝑙𝑜𝑔𝑃 (𝑎𝑡 | {𝑎𝑡−1...𝑎0}; 𝜃𝑐)𝑅

Where 𝑀 is the number of different architectures that the controller samples
in one batch and 𝑇 is the number of hyperparameters our controller has to
predict to design a neural network architecture.

17/33

Reinforcement Learning based NAS (NASNet) (ii)
This is slightly different from standard RL setup since there is only basically
two states (start and finish) in the trajectory.

It requires a full-training run to obtain 𝑅, so this is very expensive!

18/33

Gradient-based NAS (DARTs)
The problem with RL-based NAS is that it is hard for the controller to receive
gradients that relates to the child network accuracy.

But what if we can make the operators differentiable?

We associate each operator with a trainable parameter:

Let 𝑂 be a set of candidate operators (eg. convolution, max pool …), To make
a continuous search space, one can relax the discrete categorical distribution:

𝑜(‾)(𝑖,𝑗)(𝑥) = ∑
𝑜∈𝑂

𝑒𝑥𝑝(𝛼(𝑖,𝑗)𝑜)

∑𝑜′∈𝑂 𝑒𝑥𝑝(𝛼(𝑖,𝑗)𝑜′)
𝑜(𝑥)

The operation mixing weights for a pair of nodes (𝑖, 𝑗) are parameterized by a
vector 𝛼(𝑖, 𝑗) of dimension |𝑂|.

Translate this to words: weighting each operator using trainable 𝛼 values.

19/33

Gradient-based NAS (DARTs)
• Update architecture 𝛼 by descending ∇𝛼𝐿val(𝑤 − 𝜉∇𝑤𝐿train(𝑤, 𝛼), 𝛼), 𝜉 is

zero for first order optimization)

• Update weights 𝑤 by descending ∇𝑤𝐿train(𝑤, 𝛼)

• Derive the final architecture based on the learned 𝛼.

Dual-level optimization using SGD.

Gradient-based NAS (DARTs) provides a significant time reduction, since now
we run search on the cell-based space only once! There is now no need for
evaluating each child network

20/33

Gradient-based NAS (DARTs) (ii)

21/33

Evolutionary Algorithm (OFA)
However, gradient-based methods suffer from the following problems

• Large GPU VRAM usage (Single-path method)

• Is the ranking on a proxy dataset reliable?

• Gradient interference (PC-DARTs)

• No awareness about the deployment device and scenarios

22/33

Evolutionary Algorithm (OFA)
What if we train a supernet, and subsample it?

23/33

Evolutionary Algorithm (OFA) (ii)
Evolutionary Algorithm (OFA) Design a large supernet that supports sub-
sampling in various dimensions

• Kernels

• Channels

• Layers

24/33

Evolutionary Algorithm (OFA) (iii)

Evolutionary Algorithm (OFA) uses an evolutionary algorithm to traverse the
whole search space.

• Initialization and Evaluation: At the start, generate a random population
of individuals, and evaluate their performance

• Selection: Individuals are selected based on their fitness scores.

• Crossover: Selected individuals pair and exchange parts of their structure,
creating a new individual called offspring. This process is also known as
recombination or mating.

25/33

Evolutionary Algorithm (OFA) (iv)
• Mutation: Offspring are altered randomly to introduce variability in the

population. This prevents the genetic algorithm from stagnating at local
optima.

• Replacement: The population is updated with the new offspring, usually
replacing the least fit individuals. The algorithm then goes back to the
evaluation step, creating a loop.

Evolutionary Algorithm (OFA) Do the search with different hardware targets,
use the latency and accuracy to build a fitness score

26/33

Evolutionary Algorithm (OFA) (v)

27/33

Speedy Performance Estimator
All previous methods require training of one or more networks.

Can we predict the performance without or with minimal training?

• Learning curve extrapolation: extrapolating the validation accuracy
learning curve via a parameteric model.

• Zero-cost proxies: assessing the generalizability of an architecture with a
single forward pass of a single minibatch of data

• Subset selection: Training the architecture on a subset of the data

28/33

Speedy Performance Estimator (ii)

An example performance predictor can be the following:

Let 𝐿 denote a loss function, 𝑓𝜃(𝑥) the output of a neural network 𝑓 with
input 𝑥 and parameters 𝜃, and let 𝜃𝑡,𝑖 denote the parameters of the network
after 𝑡 epochs and 𝑖 minibatches of SGD.

29/33

Speedy Performance Estimator (iii)
After training the network for 𝑇 epochs, we sum the training losses collected
so far to get the following Training Speed Estimate (TSE)

𝑇𝑆𝐸 =∑
𝑇

𝑡=1
[1
𝐵
∑
𝐵

1
𝐿(𝑓𝜃𝑡,𝑖(𝑥𝑖),𝑦𝑖)]

The idea is then use this for evaluating the sub-networks, since it gets a better
rank correlation performance usually.

Performance Predictor (NASWOT): Or you can simply take a number of
networks and evaluate all of them using these low-fidelity proxies!

30/33

Speedy Performance Estimator (iv)

31/33

Speedy Performance Estimator (v)
Is this a solved problem?

Well, Yes and No

• Search spaces are normally manually defined!

• Low-fidelity methods normally work at small search spaces.

• Many of the search methods actually overfit to the search space!

32/33

Summary
• Search Spaces:

‣ Global
‣ Modular
‣ Combined

• Search Strategies
‣ Reinforcement learning
‣ Gradient-based optimization
‣ Evolutionary algorithm
‣ Performance estimators

33/33

	Introduction
	Introduction
	Network Architecture Search

	Search Space
	What is a search space?
	Global search space
	The DARTS search space
	The DARTS search space
	Combined search space

	Search Strategies
	What is a search strategy?
	Reinforcement Learning based NAS (NASNet)
	Gradient-based NAS (DARTs)
	Gradient-based NAS (DARTs)
	Evolutionary Algorithm (OFA)
	Evolutionary Algorithm (OFA)
	Speedy Performance Estimator
	Summary

