
Network Compression
Aaron Zhao, Imperial College London

Introduction

Neural Network Compression
Assume we have a pre-trained network 𝑓𝜃, how can we best approximate it
using a much smaller network 𝑓 ′𝜃′?

We are going to discuss a few popular methods in two lectures

• Network Pruning

‣ Fine-grained Pruning

‣ Coarse-grained Pruning

‣ Pruning at initialization (The lottery ticket hypothesis)

• Quantization

‣ Different arithmetic schemes

‣ Different tricks to boost the performance of quantization

‣ Extremely low-precisions (binary and ternary)

3/28

Pruning

Network Pruning
Fine-grained pruning normally refers to a pruning strategy that exploits
element-wise sparsity

Element-wise sparsity means each entry has the probability to be zeroed out.

𝑊𝑠 = 𝑀 ⊙𝑊

where ⊙ represents an element-wise Hadamard product between two
matrices.

Fine-grained Network Pruning

• Sparsity on both sides (activation and weight)

• Irregular sparsity is hard to utilize

• Re-training brings back accuracy

5/28

Network Pruning (ii)

Using normalization terms (L1/L2) in the loss to encourage more sparsity.

ℒ′ = ℒ+ 𝜆(‖𝐰‖𝑛)

where ℒ is the original cross-entropy loss and ‖ . ‖𝑛 takes the 𝑙𝑛 norm.

6/28

Network Pruning (iii)

• Ignored the values that are actually zeroed out.
• Original weight distribution has a ‘normal’ shape

7/28

Network Pruning (iv)

Name Density Compression rate
VGG7 + Cifar10 16% 6×

AlexNet + ImageNet 11% 9×
VGG16 + ImageNet 7.5% 12×

• All the above networks have less than 0.1% accuracy drop after pruning
with iterative re-training.

• Pruning is effective if you have a large network with an easy task.

• Fine-grained sparsity does not always translate to performance boost.

8/28

Coarse-grained Pruning

9/28

Coarse-grained Pruning (ii)
• Channel pruning

Remove channels 𝐶𝑖 or 𝐶𝑜 from the 𝐶𝑖 ×𝐶𝑜 ×𝐾 ×𝐾 volume)

• Kernel pruning

Remove kernels 𝐾 ×𝐾 from the 𝐶𝑖 ×𝐶𝑜 ×𝐾 ×𝐾 volume)

10/28

Channel pruning
Channel Pruning can be viewed as a problem of finding the correct way to
rank the importance of the components (eg. individual weight, filters,
kernels).

This can be done through estimating the importance of weights (eg. 𝑙𝑝 norm
of weight) or activations.

If we use weights, consider 𝑤 ∈ ℛ𝐶𝑖×𝐶𝑜×𝐾×𝐾 , the scoring function for each
output channel can be:

𝑠𝑤(𝑖) = ‖ 𝑤[:, 𝑖, :, :] ‖𝑝

If we consider activations, consider 𝑦 = 𝑤𝑥 and 𝑦 ∈ ℛ𝐶𝑜×𝐾×𝐾 , the scoring
function for each channel can be:

𝑠𝑎(𝑖) = ‖ 𝑎[𝑖, :, :] ‖𝑝

11/28

Channel pruning (ii)
Notice now we can construct more complex scoring by considering both the
importance of weights and activations. Consider to free hyperparameters 𝛼
and 𝛽:

𝑠(𝑖) = 𝛼𝑠𝑤(𝑖) + 𝛽𝑠𝑎(𝑖)

12/28

Channel Pruning: Network Slimming
Another approach (Network Slimming) is to associate a scaling variable 𝑟 ∈
ℛ𝐶𝑜 with the output values, and let SGD decide which channel is more
important. We use 𝑟 as a proxy to measure the importance of channels

Train with

𝑦′ = 𝑟 ⊙ 𝑦

and a regularized loss

ℒ′ = ℒ+ 𝜆∑
𝐶𝑜

𝑖=1
(‖𝑟[𝑖]‖𝑝)

With a new scoring function

𝑠(𝑖) = 𝑟[𝑖]

13/28

Channel Pruning: Connecting it to BN
Batch normalization has been adopted by most modern CNNs as a standard
approach to achieve fast convergence and better generalization.

This is normally inserted after convolutional layers:

𝑦 = 𝛾(𝑥 − 𝜇√
𝜎2 + 𝜖

) + 𝛽

𝛾 and 𝛽 are trainable parameters, where 𝜇 and 𝜎 are approximated through
moving values (eg. moving means).

𝛾 values are directly used for ranking in Network Slimming!

14/28

Kernel Pruning
Kernel pruning removes kernels 𝐾 ×𝐾 from the 𝐶𝑖 ×𝐶𝑜 ×𝐾 ×𝐾 volume

Naively remove kernels brings a problem: the resulted computation pattern is
also Irregular!

The only way to maintain this regularity is to remove kernels so that the
remaining ones form equal-sized groups!

15/28

Kernel Pruning (ii)

After reshaping, this is similar to grouped convolution, or similar spirit to
depth-wise convolution.

16/28

Kernel Pruning (iii)
Original computation is 𝐶𝑖 = 6,𝐶𝑜 = 6, we have in total 36 kernels.

Now is 3 sets of 𝐶′𝑖 = 3,𝐶′𝑜 = 2 convolutions, we have in total 3 × 3 × 2 =
18, this means 2 × decrease in terms of FLOPs.

17/28

Pruning at initialization
We discussed how trained networks can be pruned. What about training?

We can prune at initialization (sparse training).

The lottery ticket hypothesis: dense, randomly-initialized, feed-forward
networks contain subnetworks (winning tickets) that—when trained in
isolation – reach test accuracy comparable to the original network in a similar
number of iterations.

18/28

Pruning at initialization
We can explore different metrics such as weight magnitude, gradient norm, or
hessian of the loss with respect to the weights (SNIP).

Or we can iteratively apply metrics (iterative SNIP, FORCE): iterative process
that allows exploration by allowing already pruned parameters to resurrect at
later stages.

19/28

Quantization

Network Quantization
Quantisation methods allow parameters to be represented with much
narrower bit-widths than the 32-bit long floating-point numbers

Converting numbers to fixed-point representations drastically reduces
computation and memory requirements.

An 𝑛-bit fixed-point number with a binary point position 𝑝 can represent a
value 𝑥 with:

𝑥 = 2−𝑝 ×𝑚𝑛𝑚𝑛−1…𝑚1,

Notice fixed-point arithmetic is a linear arithmetic.

21/28

Non-linear Arithmetic
Standard floating-point

A standard IEEE floating-point number is defined as a 4-tuple, (𝑠, 𝑒,𝑚, 𝑏). 𝑠 ∈
{0, 1} is the sign bit, 𝑒 ∈ ℕ is the exponent field; 𝑏 ∈ ℕ is the exponent bias;
and 𝑚 ∈ ℕ is the mantissa.

float32 (FP32) number has 𝐸 = 8 and 𝑀 = 23, where the other bit is used
as the sign bit.

float16 (FP16) has 𝐸 = 5 and 𝑀 = 10.

MiniFloat: E,M this allows custom exponent and mantissa widths.

Non-linear Arithmetic Various block-based arithmetic (BFP, BL)

22/28

Non-linear Arithmetic (ii)

23/28

Non-linear Arithmetic

Method Config 𝐸 𝑀 𝐵
Fixed-point W8A8 - 7 -
MiniFloat W8A8 4 3 -
DMF W8A8 4 3 -
BFP W8A8 8 7 -
BFP W6A6 8 5 -
BFP W4A4 8 3 -
BM W8A8 4 3 8
BL W8A8 7 - 8

24/28

PTQ and QAT
PTQ (Post-training Quantization): normally zero-shot, directly quantized
pre-trained network without finetuning.

QAT (Quantization-aware Training): quantize and then fine-tune the
quantized network.

25/28

Straight-through Estimator for quantization
Quantization is normally used in the forward pass, and QAT requires training
it. However, functions such as ‘round’ is strictly non-differentiable!

This means you have to design your own ‘round’ function with custom back
propagation.

26/28

Mixed precision quantization
• 8 matrix multiplications in total in an Attention layer

• Each multiplication has very different statistical property

27/28

Mixed precision quantization (ii)
Mixed Precision Search with Bayesian Search

• Optuna-based search

• Sampled from a very large search space, several layers prefer to have high-
precision components.

28/28

	Introduction
	Neural Network Compression

	Pruning
	Network Pruning
	Coarse-grained Pruning
	Channel pruning
	Channel Pruning: Network Slimming
	Channel Pruning: Connecting it to BN
	Kernel Pruning
	Pruning at initialization
	Pruning at initialization

	Quantization
	Network Quantization
	Non-linear Arithmetic
	Non-linear Arithmetic
	PTQ and QAT
	Straight-through Estimator for quantization
	Mixed precision quantization

