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Introduction - MASE

MASE (Machine Learning Accelerator System Exploration) is an open-source
project that aims to automate the exploration of ML system software and
hardware.

https://github.com/DeepWok/mase
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https://github.com/DeepWok/mase

Introduction - Why re-inventing the wheel?

Consider this image before saying "don't
reinvent the wheel"
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Introduction - Why re-inventing the wheel? (ii)

« Pytorch, Tensorflow (high-level python tools), algorithmic exploration,

mapping mostly to CPUs and GPUs

« MLIR, TVM, compiler tools, map pre-defined network to various hardware

targets

« MLIR-Circt, scheduling based HLS on top of MLIR
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Introduction - Why re-inventing the wheel? (iii)

We are interested in combine these in a unified abstraction — a new graph-
based MASE Intermediate Representation (IR)
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Introduction - Passes

A pass (can be either a transformation or an analysis), takes in the IR of the
model, and returns the IR again

# pass takes a MaseGraph (the IR) and corresponding pass-related
arguments

# graph: MaseGraph, pass _args: dict

# return a MaseGraph (the IR) again, and a dictionary for
additional data

# graph: MaseGraph, info: dict

def pass name(graph, pass _args):

return graph, info
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Introduction - Overview
+ Graph-level IR system and passes (we will cover in labs)
« Module-level passes (code is there)

« The idea of summarizing workloads into a set of IRs, and apply passes on
them is the same as traditional compiler systems (eg. LLVM).
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Introduction - Overview (ii)

Can iterattively apply many of them

Direct translation

Meural Network MaseGraph IR

Fine-grained IR

coarse-grained modules

torch Module
level IR Passes
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MaseGraph IR



MASEGraph IR

Core idea: we represent Neural Networks as a computation graph, where
nodes are computation blocks and edges are data.

We represent Neural Networks as a computation DAG (Directed Acyclic
Graph), where nodes are computation blocks and edges are data.
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MASEGraph IR (ii)
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MASEGraph IR (iii)

Visualization This can be very complex, notice the transformer layer is
represented at a coarse granularity.
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MASEGraph IR (iv)

EEEE EEE
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MASEGraph IR (v)

Mase takes a torch. fx graph representation of a model and translates it into
a customised representation (Mase graph IR).

The MaseGraph IR is a lot more complex than the previous visualization.
Below is a single convolution layer. To reproduce, run masegraph.plot.
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MASEGraph IR (vi)

name=%conv1
op_code=call_module

torch.nn.modules.conv.Conv2d
stride: (2,2)

padding: (3,3)
1
ey
out_channels:
kermel_size: (7,7)

( name=%bn1

op_code=call_module

torch.nn.modules.batchnorm BatchNorm2d

track_running_stats: True
momentum: 0.1

name=%relu

op_code=call_module

torch.nn.modules.activation ReLU

inplace: True
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MASEGraph IR - Implementation

The manipulation of the model requires both access to the torch fx graph and
modules, you will understand this better after having the labs.

The definition can be found at mase/chop/ir/graph/mase _graph.py

class MaseGraph:
def init (self, model, cf args) -> None:

def fx graph(self): ... return self.model.graph

def modules(self): ... return dict(self.model.named modules())
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MASEGraph IR

MASEGraph IR - types IR types are for nodes in the MaseGraph
« placeholder: for inputs

« module: for pytorch nn.Module

« module_related_func: some functions have the same functionality as a
module, for instance, torch.nn.Conv2d (Module) and
torch.nn.functional.conv2d are the same.

« builtin_func: what fx considers as builtin_funcs

« implicit_func: all other funcs that are not builtin

« get_attr: normally used for retrieving a parameter

« output: for outputs

A complete definitions of these and also supported nodes are in mase/chop/

passes/graph/common.py
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Metadata and Analysis Passes



MASEMetadata - why?

IR only carries type information and node relations.

We normally need more information to perform complex operations, such
information is called metadata and they are added to each node.

class MaseMetadata:
» How do we add such a class to the MaseGraph IR?
Instantiate Metadata Pass Implemented as a pass!

Traverse each node and append the MaseMetadata object to each node. chop/
passes/graph/analysis/init metadata.py

def init metadata analysis pass(graph, pass _args):
for node in graph.fx graph.nodes:
node.meta["mase"] = MaseMetadata(
node=node, model=graph.model)

return graph,
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MASEMetadata - why? (ii)

Analysis Passes Optimizations or information gathering are implemented as
Passes that traverse the whole or some portion of a network to either collect
information or transform the network.

Generally, analysis passes are used for collect extra information of the
network for later transformation passes.

« add _common_metadata
« add_software_metadata
« add_hardware metadata

Passes are summarised at chop/passes/graph/ _init .py

add_common_metadata passes add a bunch of commonly used metadata to
each node. This includes

« mase_type: (module related func, implicit func...)
« mase_op: (linear, relu...)
- args: (name, type, shape and precision for all input arguments)
21/29



MASEMetadata - why? (iii)

 results: (name, type, shape and precision for all all results)

add_common_metadata passes

name

< lype
arg0 shape

precision

mase_type
mase_op

name

results  f——m SEESE

precision
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MASEMetadata - why? (iv)

add_software_metadata and add_hardware_metadata passes do the same

thing but add metadata for software and hardware respectively.

{

"common": "mase type": "module related func",

"mase_op": "linear",
||argS|| .

"data in 0": {
"shape": [1, 784],
"type": "float",
"precision": [32] ...},
"weight": {
"type": "float",
"precision": [32],
"shape": [784, 784] ... },
"bias": {
"type": "float",
"precision": [32],
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MASEMetadata - why? (v)

"shape": [784] ... },
"data out 0": {
"type": "float",
"precision": [32]...
}
"torch_dtype": torch.float32,
"software": ...,
"hardware": ...,
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Transform Passes



Transform Passes

Transform passes take a MaseGraph (or a network) as an input and perform
certain modifications to it as an input and perform certain modifications to it.

I will use the quantization transform pass as an example.

chop/passes/graph/transforms/quantize/quantize.py
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Quantize Transform Passes

def quantize transform pass(graph, pass_args=None):
by = pass_args.pop("by")
match by:
case "type":
graph = graph_iterator quantize by type(
graph, pass_args)
case "name":
graph = graph_iterator_quantize by name(
graph, pass_args)
case '"regex_ name":
graph = graph_iterator _quantize by regex name(
graph, pass_args)
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Quantize Transform Passes
« Transformation is also implemented as a traverse to the MaseGraph.
+ You can use pass arguments to control your logic.

def graph iterator quantize by name(graph, config):
for node in graph.fx_graph.nodes:

# create the new quantized module
ori module = get node actual target(node)
# take the parent node based on the graph hierarchy
parent name,
new module = create new module(...)
name = get parent name(node.target)
# update meta data accordingly
setattr(graph.modules[parent name], name, new module)
update quant meta param(node, node config,
get mase op(node))
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What’s next?
+ You will go through the quantization pass and learn MASE in labs.

« Lecture 3 - 4 will cover more on MASE and the labs.
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