
An Introduction to Labs
Aaron Zhao, Imperial College London

Overview

• Lab 0:

‣ Introducing MASE and FX Graph

‣ Insert a LoRA adaptor

• Lab 1:

‣ Quantization-aware training

‣ Unstructured pruning

• Lab 2:

‣ NAS with Bayesian optimization

2/37

Introduction to the Mase IR,

MaseGraph and Torch FX passes

Tools

Use Google Colab if you do not have a powerful enough work station with a

GPU, it is likely you will have to use Google Colab for this course.

There is a quick introduction on how to set it up correctly and use it. The

department will reimburse the cost of using Colab Pro.

4/37

Accessing MASE

MASE has two modes to be accessed

• Direct usage through the command line interface, use it as a tool (Not

suggested…)

• Interactive usage, import it as a package

In all the labs, we are dealing with the second usage.

5/37

Installing MASE

Avoid installing directly using your native Python

• Docker: OS-level virtualization, containers

• Conda: Environment controlling

• NIX

Follow the Readme on the installation, pick the one you like.

6/37

Loading a pre-trained BERT model

In today’s ML world, we typically use pre-trained models and fine-tune them

on our data.

This lab aims to show you how to do that.

First, we load a model from the Hugging Face model hub, which is argubaly

the most popular model hub.

from transformers import AutoModelForSequenceClassification

model =

AutoModelForSequenceClassification.from_pretrained("prajjwal1/

bert-tiny")

7/37

FX Graph

There are 6 different types of nodes in an FX graph

• placeholder

• get_attr

• call_function

• call_module

• call_method

• output

A generated FX graph can be hard to visualize because of its size and

complexity.

8/37

MASE IR and Passes

• FX Graph is a symbolic representation of a PyTorch model.

• FX IR has no information regarding the workload being executed by the

graph - that’s where the Mase IR comes in

• The major benefit of the Mase IR is in offering a common abstraction layer

for both hardware and software workloads

• So that we can represent every optimization/analysis as a pass!

def dummy_pass(mg, pass_args={}):

 # ... do some setup

 pass_outputs = {}

 for node in mg.fx_graph.nodes:

 # ... do stuff

 return mg, pass_outputs

9/37

An example of a Pass

from chop.tools import get_logger

logger = get_logger("mase_logger")

logger.setLevel("INFO")

def count_dropout_analysis_pass(mg, pass_args={}):

 dropout_modules = 0

 dropout_functions = 0

 for node in mg.fx_graph.nodes:

 if node.op == "call_module" and "dropout" in node.target:

 logger.info(f"Found dropout module: {node.target}")

 dropout_modules += 1

 else:

 logger.debug(f"Skipping node: {node.target}")

 return mg, {"dropout_count": dropout_modules

dropout_functions}

10/37

Polymorphism of Passes

A pass, no matters whether it is an analysis pass or a transform pass, takes

the following format

pass_args is a dict

def pass(mg, pass_args):

 ...

 # info a a dict

 return mg, info

This then makes chaining passes together very easy.

mg = MaseGraph(model=model)

mg, _ = pass_a(mg, pass_args)

mg, _ = pass_b(mg, pass_args)

mg, _ = pass_c(mg, pass_args)

...

11/37

Finetuning Bert for Sequence

Classification using a LoRA adapter

LoRA

• Full model fine-tuning can be expensive and time-consuming.

‣ GPUs have limited memory.

‣ More parameters mean more computation.

‣ Can we fine-tune only a part of the model?

‣ We have LoRA for that!

• LoRA is a lightweight adapter for fine-tuning pre-trained models.

𝑦 = 𝑥𝑊 = 𝑋(𝑊 +𝐴𝐵) where 𝐴 and 𝐵 are low-rank matrices

13/37

LoRA (ii)

14/37

LoRA (iii)

The insertion of the LoRA adapter is done through a pass.

mg, _ = passes.insert_lora_adapter_transform_pass(

 mg,

 pass_args={

 "rank": 6,

 "alpha": 1.0,

 "dropout": 0.5,

 },

)

15/37

Some training parameters you might use

Canonical training parameters

• batch_size: how many inputs to proceed concurrently

• learning_rate: the critical parameter for your optimizer

• max_epochs: maximum number of epochs to train

• dropout: the dropout rate

LoRA parameters

• rank: the rank of the low-rank matrices

• alpha: the weight of the adapter

16/37

Underfitting and Overfitting

• Underfitting: the model is too simple to capture the data.

• Overfitting: the model is too complex and memorizes the data.

17/37

Causes of Underfitting and Overfitting

• Model sizes: too small or too large.

• Learning rate: too small or too large.

18/37

The underlying system

You need to have a rough idea of what is happening in the underlying

hardware system.

• Data: is your data on the disk or on the device? If it is on the device, is it in

CPU RAM or GPU VRAM?

• Data pre-processing: is this on CPU or GPU?

• Actual Training: is this on CPU or GPU? If it is on GPU, how much data do

you need to ship from CPU to avoid idling GPUs? What is the interconnect

bandwidth? And is it a bottleneck?

MASE automatically handles some of these things, but you need to have an

idea of what is going on.

Use nvidia-smi and htop to inspect the system while running your stuff!

wathc -n 0.5 nvidia-smi inspects the GPU usage and refreshes every 0.5

seconds.

19/37

Dataset definition

class MyDataset(Dataset):

 def __len__(self):

 return len(self.X)

 def __getitem__(self, idx):

 return self.X[idx], self.Y[idx]

Dataset definition

• __len__ defines the size of the dataset

• __getitem__ defines how elements in a dataset is accessed

You can almost tell that X and Ys are prepared when instantiating this class,

from the __getitem__ function you can tell elements are accessed through an

internal list (CPU RAM or GPU VRAM).

20/37

Model definition

 class MyModel(nn.Module):

 def __init__(self):

 super(MyModel, self).__init__()

 self.blocks = nn.Sequential(...)

 def forward(self, x):

 return self.blocks(x)

is standard Pytorch semantics

• We define a neural network by subclassing nn.Module. If you do not

understand semantics such as super, __init__, forward, you should look

them up and study OOP in your own time.

• We initialize the neural network layers in __init__.

• Every nn.Module subclass implements the operations on input data in the

forward method.

21/37

Pytorch 101

• nn.Sequential: an ordered container of modules. The data is passed through

all the modules in the same order as defined. You can use sequential

containers to put together a quick network.

• nn.Linear and nn.BatchNorm1d: these are the layers of the network.

• nn.Modules

‣ PyTorch uses modules to represent neural networks.

‣ Modules are: Building blocks of stateful computation.

‣ PyTorch provides a robust library of modules.

‣ Tightly integrated with PyTorch’s autograd system, directly interacts

with Optimizers.

• nn.functional

‣ Implementation of many basic autograd functions.

22/37

Pytorch 101 (ii)

‣ Lower-level than nn.Modules, normally directly connects to backend

(CUDA/CPU) functions.

‣ One can imagine nn.Module as a wrapper of nn.functional.

23/37

Pytorch 101: Autograd Funcitons

• Autograd functions normally take the following form.

• Customized forward and backward functions.

• ctx is a context memory for buffering intermediate values.

• Some commonly used functions such as torch.functional.conv2d are directly

implemented in C++/CUDA.

class LegendrePolynomial3(torch.autograd.Function):

 @staticmethod

 def forward(ctx, input):

 ctx.save_for_backward(input)

 return 0.5 * (5 * input ** 3 - 3 * input)

 @staticmethod

 def backward(ctx, grad_output):

 input, = ctx.saved_tensors

 return grad_output * 1.5 * (5 * input ** 2 - 1)

24/37

Pytorch 101: Module

• Wraps autograd functions, drop them directly in forward.

class Conv2d(nn.Module): ...

 def _conv_forward(self, input, weight, bias): ...

 return F.conv2d(

 input, weight, bias,

 self.stride, self.padding,

 self.dilation, self.groups)

 def forward(self, input: Tensor) -> Tensor:

 return self._conv_forward(input, self.weight, self.bias)

25/37

Pytorch 101: High-level overview

• Optimizers (the optimizer we use for training) are only accessing

nn.Module.

• Trainable parameters that are not wrapped in modules may not be tracked!

optimizer = torch.optim.SGD(

 model.parameters(), lr=learning_rate)

26/37

Running Quantization-Aware

Training (QAT) on Bert

Two quantization paradigms

• Quantization-Aware Training (QAT): the model is trained with quantization

in mind. We apply quantization to the model during training.

• Post-training quantization: the model is trained normally. We apply

quantization to the model after training.

Which one do you think is more popular?

28/37

Applying a Quantization Pass

import chop.passes as passes

quantization_config = {

 "by": "type",

 ...

 "linear": {

 "config": {

 "name": "integer",

 "data_in_width": 8,

 "data_in_frac_width": 4,

 "weight_width": 8,

 "weight_frac_width": 4,

 "bias_width": 8,

 "bias_frac_width": 4,}}}

mg, _ = passes.quantize_transform_pass(

 mg, pass_args=quantization_config)

29/37

Unstructured Pruning on Bert

Various Pruning Techniques

Based on Granularity

• Unstructured pruning: removing individual weights from the model.

• Structured pruning: removing entire neurons, layers, or channels from the

model.

Do you think unstructured pruning is more popular than structured

pruning?

Based on Strategy

• Progressive pruning: gradually pruning the model over time.

• Iterative pruning: pruning the model in multiple iterations.

• Prune and retrain: pruning the model and retraining it.

and so on

31/37

Applying a Pruning Pass

import chop.passes as passes

pruning_config = {

 "weight": {

 "sparsity": 0.5,

 "method": "l1-norm",

 "scope": "local",

 },

 "activation": {

 "sparsity": 0.5,

 "method": "l1-norm",

 "scope": "local",

 },

}

mg, _ = passes.prune_transform_pass(mg, pass_args=pruning_config)

32/37

Neural Architecture Search (NAS)

with Mase and Optuna

Network Architecture Search

NAS is a technique to automatically search for the best neural networkNAS is

a technique to automatically search for the best neural network architecture.

In this lab, we will use Optuna to perform NAS on a simple BERT model

• Define the search space

• Write the model constructor

• Write the objective function

34/37

Defining the Search Space

The search space is defined as a dictionary, where the keys are the

hyperparameters and the values are the search spaces.

import torch.nn as nn

from chop.nn.modules import Identity

search_space = {

 "num_layers": [2, 4, 8],

 "num_heads": [2, 4, 8, 16],

 "hidden_size": [128, 192, 256, 384, 512],

 "intermediate_size": [512, 768, 1024, 1536, 2048],

 "linear_layer_choices": [

 nn.Linear,

 Identity,

],

}

35/37

Model constructor and objective function

Write a model constructor

The model constructor takes an “instance” or a sample of a set of

hyperparameters and constructs a model.

Objective function

In this lab, the objective function is simply the evaluation accuracy.

In the real world, we normally use a more complex objective function,

involving parameters such as the FLOPs, the number of parameters, or the

inference time.

36/37

Bayesian Optimization

Optuna uses Bayesian optimization to search for the best hyperparameters

under the hood.

Bayesian optimization (BO) is an optimization technique that uses

probabilistic models to predict the performance of a model at a given

hyperparameter configuration. It can then use this model to guide the search

for the best hyperparameters.

37/37

	Overview
	Introduction to the Mase IR, MaseGraph and Torch FX passes
	Tools
	Accessing MASE
	Installing MASE
	Loading a pre-trained BERT model
	FX Graph
	MASE IR and Passes
	An example of a Pass
	Polymorphism of Passes

	Finetuning Bert for Sequence Classification using a LoRA adapter
	LoRA
	Some training parameters you might use
	Underfitting and Overfitting
	Causes of Underfitting and Overfitting
	The underlying system
	Dataset definition
	Model definition
	Pytorch 101
	Pytorch 101: Autograd Funcitons
	Pytorch 101: Module
	Pytorch 101: High-level overview

	Running Quantization-Aware Training (QAT) on Bert
	Two quantization paradigms
	Applying a Quantization Pass

	Unstructured Pruning on Bert
	Various Pruning Techniques
	Applying a Pruning Pass

	Neural Architecture Search (NAS) with Mase and Optuna
	Network Architecture Search
	Defining the Search Space
	Model constructor and objective function
	Bayesian Optimization

