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Overview

« Lab 3:
» Mixed Precision Search

« Lab 4:
» Software stream: Automated and manual low-level optimizations
» Hardware stream: Emitting SystemVerilog from Pytorch models
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Mixed Precision Search



Mixed precision search

« Different blocks of a neural network have different numerical
characteristics.
« It naturally makes sense to use different precisions for different blocks.

5
Algorithm 1 Transformer layer 2

Require: X > Input features
Require: H > Number of heads 9l
1: Xn < Layer Norm(X)
: fori € [0, H) do
H Qz — XnWQi
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4: K; + X, Wk,
5: Vi X Wy,
6: A — QKT
di
7 A; « softmax(A;, axis — —1)
8: Bi « A:V;
9: end for
10: B. < concat(Bo,...,Bu_1)
11: Bo < B:Wy + bo
12: By < LayerNorm(Bo + X) |
13: By + ReLU(B,Wi +b) 2715, s 10 15 20 % %
14: By + B1W2 + b2
15 O« Bo+Bo+ X Layer ID
16: return O
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Integer quantization

Depending on your background, the definition of integer quantization can be

different. We define integer quantization as the process of converting a

floating-point number to an integer number with a fixed decimal point (same

as fixed-point arithmetic).

These are also known as linear quantization.
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Non-linear quantization

« Float based
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Software stream: Automated and
manual low-level optimizations



torch.compile

torch.compile is a tool that can be used to compile PyTorch models to a
lower-level representation. It is currently in the Pytorch ecosystem, and it is a
tool that can be used to optimize PyTorch models.

One can see this as an automated way to perform low-level optimizations,
replying on optimization flows that are already implemented.

FX-Graph: FX-Graph is a symbolic representation of PyTorch models that is
designed to be more amenable to optimization

TorchDynamo: TorchDynamo is responsible for JIT compiling arbitrary
Python code into FX graphs

TorchInductor: TorchInductor i*TorchInductor: TorchInductor is responsible
for lowering FX graphs into a efficient kernel representations

Triton: the language that is used to actually implement these low-level
kernel representations.
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Fused kernels

In this lab, we take a look at what is a fused kernel that implements
ScaledDotProductAttention.

Kernel fusion can happen at different levels, we can fuse kernels at the level
of the computation graph, or we can fuse kernels at the level of the actual
implementation.

In this example in the lab, we fuse at at the pythonic level, which is a higher
level of abstraction.
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Porting a custom kernel
We aim to port an MXInt kernel in this lab.

What would you do?

« It is a custom kernel that is implemented in CUDA (CUTLASS CUTE)

« CUTLASS is a template library that provides highly tuned matrix
multiplication kernels for NVIDIA GPUs using CUDA.

« This requires a matching GPU CC (compute capability).

+ You will have to build this kernel from scratch
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Porting a custom kernel
What is MXInt?

IEEE Float32 (FP32)
1-bit sign, 8-bit exponent, 23-bit mantissa
en P D Sign

O OO OO O e e
D Exponent

IEEE Float16 (FP16) MiniFloat / Denormed Minifloat (DMF) [:] Mantissa
1-bit sign, 5-bit exponent, 10-bit mantiisa 1-bit sign, 4-bit exponent, 3-bit mantiisa X
D Exp bias
O ey a0
Block Minifloat (BM) Block Floating Point (BFP) Block Logorithm (BL)
1-bit sign, E-bit exponent, M-bit mantissa 1-bit sign, M-bit mantissa 1-bit sign, E-bit exponent
B-bit shared exponent bias E-bit shared exponent B-bit shared exp bias
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Hardware stream: Emitting
SystemVerilog from Pytorch models



Porting a custom kernel (iii)

The goal of this lab is to automatically generate a fully-connected layer in
SystemVerilog, and test it using Cocotb.

Cocotb is a COroutine based COsimulation TestBench environment for
verifying VHDL and SystemVerilog RTL using Python.

We use the Cocotb with the Verilator backend.

Cocotb: direct testing in Python, no need to write a testbench in
SystemVerilog.

Verilator: ‘up-compiles’ SystemVerilog into multithreaded C++, lightening
fast, no need to open vendor tools when doing behavior level testing.
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EmitVerilog Pass in MASE

« Classic source to source generation
+ Directly generate SystemVerilog from MaseGraph

from chop.passes.graph.transforms import (

emit verilog top transform_pass,

emit internal rtl transform pass, emit bram transform pass,
emit verilog tb transform pass)
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EmitVerilog Pass in MASE (ii)

emit_internal_rtl

¥ Y Y
BRAM BRAM BRAM
Logic RTL Logic RTL Logic RTL

emit_internal_rtl

top-leve file b file

emit verilog_top emit_verilog_tb
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EmitVerilog Pass in MASE (iii)
EmitVerilog generates dataflow designs
 Generate functional elements (RTL)

» Generate memory components (BRAM)

« Dataflow accelerator design without making use of the DRAM
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Dataflow accelerator designs

+ A homogeneous Big Compute Core (normal design, ASIC)

« A series of tailored small compute cores (dataflow design, FPGA)
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Dataflow accelerator design: Advantages
« No complex control flow (minimal or no ISA design)

+ (Almost) no waste of resources

+ (Almost) fixed memory access pattern

+ Deeply pipelined
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Dataflow accelerator design: Disadvantages
» Re-program hardware for each new network
« Scalability issues

« If DRAM is utilized, hard to achieve great performance by filling up all
pipeline stages
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The compute pattern Simple blocking

# Breaking the vector into blocks
for i in range(®, n, block size):
# calculate end val considering the last block which can be
smaller than block size
end val i = min(i + block size, n)
# Retrieving block of a
sub a = a[i:end val i]
# Retrieving corresponding elements from the vector
sub b = b[i:end val i]
# multiplication, actual hardware dimension is (block size, 1)
result += np.dot(sub\_a, sub\ b)
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The compute pattern

Vector a: N elements  Vector b: N elements

_ N * N mutlipliers in hardware
Finish in 1 clock cycle

Vector a: N elements  Vector b: N elements

Block size: M

-:I M mutlipliers in hardware
Finish in N'M clock cycle
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The compute pattern (ii)

« N >> M, this gives you a chance to do a trade-off between resources and
latency simply by changing M.

« Blocking can happen in a 2D shape!
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2D Blocking

M = M mutlipliers in hardware
Finish in N*NAM*M) clock cycle

« Parallel Multipliers (M?).
« M Adder Trees (log,(M)).
o M Accumulators (M).
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