
An Introduction to Labs (2)
Aaron Zhao, Imperial College London

Overview

• Lab 3:

‣ Mixed Precision Search

• Lab 4:

‣ Software stream: Automated and manual low-level optimizations

‣ Hardware stream: Emitting SystemVerilog from Pytorch models

2/23

Mixed Precision Search

Mixed precision search

• Different blocks of a neural network have different numerical

characteristics.

• It naturally makes sense to use different precisions for different blocks.

4/23

Integer quantization

Depending on your background, the definition of integer quantization can be

different. We define integer quantization as the process of converting a

floating-point number to an integer number with a fixed decimal point (same

as fixed-point arithmetic).

These are also known as linear quantization.

5/23

Non-linear quantization

• Float based

‣ Sign (Blue)

‣ Exponent (Green)

‣ Mantissa (Red)

‣ Exponent bias (a constant)

• Logarithmic based

6/23

Software stream: Automated and

manual low-level optimizations

torch.compile

torch.compile is a tool that can be used to compile PyTorch models to a

lower-level representation. It is currently in the Pytorch ecosystem, and it is a

tool that can be used to optimize PyTorch models.

One can see this as an automated way to perform low-level optimizations,

replying on optimization flows that are already implemented.

FX-Graph: FX-Graph is a symbolic representation of PyTorch models that is

designed to be more amenable to optimization

TorchDynamo: TorchDynamo is responsible for JIT compiling arbitrary

Python code into FX graphs

TorchInductor: TorchInductor i*TorchInductor: TorchInductor is responsible

for lowering FX graphs into a efficient kernel representations

Triton: the language that is used to actually implement these low-level

kernel representations.

8/23

Fused kernels

In this lab, we take a look at what is a fused kernel that implements

ScaledDotProductAttention.

Kernel fusion can happen at different levels, we can fuse kernels at the level

of the computation graph, or we can fuse kernels at the level of the actual

implementation.

In this example in the lab, we fuse at at the pythonic level, which is a higher

level of abstraction.

9/23

Porting a custom kernel

We aim to port an MXInt kernel in this lab.

What would you do?

• It is a custom kernel that is implemented in CUDA (CUTLASS CUTE)

• CUTLASS is a template library that provides highly tuned matrix

multiplication kernels for NVIDIA GPUs using CUDA.

• This requires a matching GPU CC (compute capability).

• You will have to build this kernel from scratch

10/23

Porting a custom kernel

What is MXInt?

11/23

Hardware stream: Emitting

SystemVerilog from Pytorch models

Porting a custom kernel (iii)

The goal of this lab is to automatically generate a fully-connected layer in

SystemVerilog, and test it using Cocotb.

Cocotb is a COroutine based COsimulation TestBench environment for

verifying VHDL and SystemVerilog RTL using Python.

We use the Cocotb with the Verilator backend.

Cocotb: direct testing in Python, no need to write a testbench in

SystemVerilog.

Verilator: ‘up-compiles’ SystemVerilog into multithreaded C++, lightening

fast, no need to open vendor tools when doing behavior level testing.

13/23

EmitVerilog Pass in MASE

• Classic source to source generation

• Directly generate SystemVerilog from MaseGraph

from chop.passes.graph.transforms import (

emit_verilog_top_transform_pass,

emit_internal_rtl_transform_pass, emit_bram_transform_pass,

emit_verilog_tb_transform_pass)

14/23

EmitVerilog Pass in MASE (ii)

15/23

EmitVerilog Pass in MASE (iii)

EmitVerilog generates dataflow designs

• Generate functional elements (RTL)

• Generate memory components (BRAM)

• Dataflow accelerator design without making use of the DRAM

16/23

Dataflow accelerator designs

• A homogeneous Big Compute Core (normal design, ASIC)

• A series of tailored small compute cores (dataflow design, FPGA)

17/23

Dataflow accelerator design: Advantages

• No complex control flow (minimal or no ISA design)

• (Almost) no waste of resources

• (Almost) fixed memory access pattern

• Deeply pipelined

18/23

Dataflow accelerator design: Disadvantages

• Re-program hardware for each new network

• Scalability issues

• If DRAM is utilized, hard to achieve great performance by filling up all

pipeline stages

19/23

The compute pattern Simple blocking

Breaking the vector into blocks

for i in range(0, n, block_size):

 # calculate end val considering the last block which can be

smaller than block_size

 end_val_i = min(i + block_size, n)

 # Retrieving block of a

 sub_a = a[i:end_val_i]

 # Retrieving corresponding elements from the vector

 sub_b = b[i:end_val_i]

 # multiplication, actual hardware dimension is (block_size, 1)

 result += np.dot(sub_a, sub_b)

20/23

The compute pattern

21/23

The compute pattern (ii)

• 𝑁 >> 𝑀 , this gives you a chance to do a trade-off between resources and

latency simply by changing 𝑀 .

• Blocking can happen in a 2D shape!

22/23

2D Blocking

• Parallel Multipliers (𝑀2).

• 𝑀 Adder Trees (𝑙𝑜𝑔2(𝑀)).

• 𝑀 Accumulators (𝑀).

23/23

	Overview
	Mixed Precision Search
	Mixed precision search
	Integer quantization
	Non-linear quantization

	Software stream: Automated and manual low-level optimizations
	torch.compile
	Fused kernels
	Porting a custom kernel
	Porting a custom kernel

	Hardware stream: Emitting SystemVerilog from Pytorch models
	EmitVerilog Pass in MASE
	Dataflow accelerator designs
	Dataflow accelerator design: Advantages
	Dataflow accelerator design: Disadvantages
	The compute pattern Simple blocking
	The compute pattern
	2D Blocking

