
Introduction and Lab1
Aaron Zhao, Imperial College London



General Introduction



Introduction - Myself

My name is Aaron, and my research looks at the intersections between
algorithm, hardware and security in Deep Learning (DL) Systems.

My email is a.zhao@imperial.ac.uk, and my office is 903.

3/56



Introduction - Myself
• Automatic Co-designing AI Systems with MASE

MASE aims to provide a unified representation for software-defined ML
heterogeneous system exploration.

• Beyond Structure Data

Investigate on unstructured and multimodal data, such as graphs,
hypergraphs and combinatorial complex.

• Efficient AI

Different algorithmic aspects of efficient AI, including efficient training,
efficient inference, efficient model search and efficient model deployment
with state-of-the-art GenAI models (eg. language and diffusion models).

• System-level AI Safety

This includes robustness, security, and red-teaming these models to
understand new vulnerabilities.

4/56



Introduction - Teaching and RAs
The course is taught by me and Sarim Baig:

• I cover the FPGA parts
• Sarim covers the software parts

This course is also supported by the following GTAs and UTAs:

• Cheng Zhang
• Jeffrey Wong
• Alexander Charlton
• Rahul Ganeshsankar

5/56



Introduction - Where to find stuff?
Everything is online:

• Course webpage (https://aaron-zhao123.github.io/teaching/info_process/)
• The Labs (1-4) are in a Github Repository (https://github.com/Aaron-Zhao

123/ELEC50009)
‣ Do not push to this repository
‣ You can fork it and push to your own repository

• If you do not understand what is push and fork, check this link: https://
www.youtube.com/watch?v=nT8KGYVurIU&ab_channel=TheCodex

6/56

https://aaron-zhao123.github.io/teaching/info_process/
https://github.com/Aaron-Zhao123/ELEC50009
https://github.com/Aaron-Zhao123/ELEC50009
https://www.youtube.com/watch?v=nT8KGYVurIU&ab_channel=TheCodex
https://www.youtube.com/watch?v=nT8KGYVurIU&ab_channel=TheCodex


Objectives and delivery

• Bring together theory and application from other modules
• Create an information processing system
• Project-based learning and integration of knowledge

7/56



Intended learning outcomes
• Design an information processing system that captures, analyses,

manages, and outputs signals
• Implement an information processing system using a combination of

software, hardware, networks, and databases
• Optimise a system to achieve given performance or quality targets

8/56



Let’s be more specific: design an IoT system
• Nodes for local (signal) processing of accelerometer data
• Communication to a server
• Integration with a database
• Adapt processing in nodes

9/56



Let’s be more specific: accelerometer
Accelerometer measures the value of change of velocity (acceleration)

10/56



Let’s be more specific: the development board
DE10-lite
• FPGA (Intel)
• Instantiation of a soft processor (NIOSII)
• Processing capability (can perform computation) and communication

capability (talk to a local PC)

11/56



Let’s be more specific: AWS DB
• Instantiate and use a database on the cloud
• Communicate from the host PC to the database through network

12/56



Structure and dates
• Phase 1 - training (Week 2 - Week 5)

‣ Lab based
‣ To help you to build an understanding of the system
‣ with GTAs for Q&A

• Mid-term Assessment (20%) (Week 6)
‣ Lab orals
‣ Completion and understanding of the labs
‣ Assessed as a group

• Phase 2 - group project (Week 7 - Week 10)
‣ Functional requirements
‣ Non-functional requirements
‣ GTA help

• Final Assessment (80%) (Week 11)

13/56



Phase 1 - Training
• Week 2 (Aaron)

‣ Lab 1: Introduction to DE10-Lite. Install tools and learn how to program
the device

‣ Lab 2: Instantiate a NIOSII system, use the accelerometer

• Week 3 (Aaron)
‣ Lab 3: Establish a UART-base communication between the board and the

desktop PC
‣ Lab 4: Design an IP module for performing a moving average in HW.

Connect to NIOSII and process the accelerometer data

• Week 4 (Sarim)
‣ Lab 5: Create a remote server in AWS and run a custom service

• Week 5 (Sarim)
‣ Lab 6: Create a remote database and perform queries

14/56



Phase 2 - Team project
• In-person and remote working support
• General idea

‣ Local node needs to talk to a server (on the cloud).
‣ Server needs to talk back, the information needs to propagate back.

• Elaboration
‣ Try to see how nodes can affect each other.
‣ Detect events, and change the processing in the nodes through a

centralised server.
• Log your events, or perform actions on the events.
• Detailed functional and non-functional requirements will be communicated

15/56



Logistics
• Lectures (Every Tuesday Weeks 2-4, then in ad-hoc basis as needed)
• Weekly support hours for the Team Projects.

‣ Prepare your questions
• Groups and Communications

‣ Groups of five or six, have to all come from either group A or B.
‣ If you cannot find a group, we will make one for you
‣ You should start making a group now, deadline for this was 13th January
‣ We will provide a finalized group list by the end of this week.

• Course Material
‣ Teams
‣ Coursework wiki and Github Repo

16/56



An introduction to FPGAs



Why an FPGA is an interesting device to consider
FPGA sells more than 40 million units per year, and is used in many
applications, and we have the following vendors:

• AMD (Xilinx): around 50% of the market
• Intel (Altera): around 30% of the market
• Microsemi
• Lattice
• and more

18/56



Why an FPGA is an interesting device to consider

Figure 1: Xilinx Virtex chip (left), Xilinx Pynq Dev Board (middle), Xilinx
Alveo accelerator card (right)

Similar to all other chips, FPGAs can be used in many applications and exist
in many forms, such as on a development board (eg. Pynq), or as an
accelerator card (eg. Alveo).

19/56



The growing need of energy efficient computing

Figure 2: Robotics (left), UAVs (middle), Vision systems in cars (right)

There is now an increasing need for high-performance systems on low power
systems (eg. robotics, UAVs, vision systems in cars).

20/56



The growing need of energy efficient computing

Figure 3: Bio-computing (left), large-scale simulation such as weather
prediction (middle), AI computing (right)

There is now an increasing need for high-performance systems on large-scale
workloads too. This is normally in large-scale data centres, where energy
efficiency is a key concern.

21/56



The “ideal” computing device
• Energy efficient

‣ Betters Ops/Watt/Second/Area

• Cost efficient
‣ Better running cost, somehow it is the same as energy efficiency
‣ Better manufacturing cost

– Die area
– Yield
– Time to market
– nm node

22/56



Approach 1
• Design or write more “efficient” algorithms

‣ Better data structures
‣ Better software engineering practices
‣ Better compilers
‣ Better hardware

• Use approximations
‣ for instance, quantization or sub-sampling

• Consider the architecture of the system and optimize your program

23/56



Approach 2
Do nothing. Just wait for the next generation processor.

No more free lunch.

24/56



Approach 3
Use heterogeneous systems:

CPUs combined with other hardware (eg. parallel architectures, or ASICs) on
the same SoC.

• Multi- or even Many-core CPUs (AMD Ryzen Threadripper PRO 7995WX,
96 Cores, 192 Threads 2.5GHz and max 5.1GHz)

• Graphic Processing Units (Nvidia H100, 640 Tensor Cores, 128 RT Cores, 80
Streaming Multiprocessors (SMs) and 18,432 CUDA cores)

• Field Programmable Gate Arrays (around 2M Logic Elements/LUTs, around
5K DSPs)

25/56



Approach 3 (ii)

26/56



The flexibility and performance trade-off

,

• The left-hand side may have better power efficiency on the specific tasks.
• The right-hand side is more flexible and requires shorter dev cycles and

efforts.

Benefits come from customising the hardware to the application, and also by
tuning your application for the hardware, this is also known as software-
hardware co-optimization.

27/56



Device comparison: multi-core CPUs
• Each core is fairly powerful and runs at a very high frequency.
• Complex memory hierarchy, eg. L1, L2, L3 caches.
• Up to linear speed up (extremely optimistic!).

28/56



Device comparison: GPUs
• Many light-weight thread processors (SMs, in Nvidia world) => Hide

memory latency.
• All thread processors execute the same sequential code.
• SIMD architecture

‣ massive data parallelism.
‣ optimized memory access

Existing GPUs take advantage of the SIMD architecture, and are optimized for
massive data parallelism. They also take over the top manufacturing process
(eg. 3nm at TSMC). They are currently dominating the AI computing market.

29/56



Device comparison: GPUs (ii)

,

30/56



Device comparison: FPGAs
• (Re-)programmable digital hardware – can implement any digital circuit.
• Can exploit low-level pipeline parallelism Logic blocks evaluate simple

Boolean functions.
• Interconnection resources connect blocks to implement complex systems.
• One way to understand is this is comoputign in “space” rather than “time”.

,

What price do you think we are paying for this reconfigurability?

31/56



Heterogeneous computing
Normally in today’s market, we see a combination of CPUs, GPUs, and
FPGAs in the same system. This is known as a heterogeneous system. And
this integration can actually happen at various granularities:

• Intel Xeon Gold 6138P with Arria 10 FPGA: server-scale CPU with FPGA
• NVIDIA GB200 architecture: Grace CPU with Hopper GPU

32/56



FPGA design flow

33/56



Field Programmable Gate Arrays (FPGAs)
• Xilinx (now part of AMD) is the first to introduce SRAM based FPGA using

Lookup Tables (LUTs)

• Components
‣ Configurable Logic Block (CLB)
‣ Input/Output Blocks (IOBs)
‣ Programmable Interconnects
‣ DSPs
‣ Block RAMs

34/56



Field Programmable Gate Arrays (FPGAs) (ii)

35/56



CLBs
• Each Configurable Logic Block (CLB) has 2 main Look-up Tables (LUTs)

and 2 registers.

• The two LUTs implement two independent logic functions F and G.

• Shown here is the CLB for Xilinx XC4000 devices.

36/56



CLBs (ii)

37/56



LUTs
• LookUp Table (LUT) is implemented using latches

‣ 4-LUT (i.e. 4-input LUT) implements any truth table with 4 inputs, this
constructs combinatorial logic functions

‣ Requires 24 storage elements, each implemented with a latch (similar to a
flip-flop, but half the size roughly, 1-bit memory)

‣ Multiplexer select one latch to output
‣ “Configuration bit stream” is loaded under user control

38/56



LUTs (ii)

Typical interview questions: how many 4-LUTs are needed to implement an
8-bit adder?

39/56



Programmable interconnect
• Switch-box provides programmable interconnect

‣ Local interconnects are fast and short
‣ Horizontal and vertical interconnects are of various lengths

40/56



End of the Dinosaurs Age

41/56



Modern FPGA devices –- heterogeneous
Pre-built ASIC components are already integrated

42/56



Current available FPGAs from Intel

43/56



Current available FPGAs from Intel

44/56



Questions?
Any questions?

45/56



An introduction to Lab1



What is in this lab?
• Setting up Quartus Prime Lite to run (Maybe actually harder than you

think!).

• Create a directory structure for this and subsequent labs.

• Create a new project in Quartus and complete a basic 7-segment LED
display decoder design using Quartus and Verilog.

• Program the MAX10 FPGA chip on the DE10-Lite board with your design.

• Understand the FPGA compilation process.

• Create another project for hex-to-BCD decoding.

• Explore and test your design.

47/56



Setting up your environment
• Quartus Prime (preferred setup is in the VirtualBox or lab machine).

• Explore the programmer: this uses the USB-blaster to program the FPGA
from your host machine.

• Explore the Ping Assignment tool.

• Netlist Viewer and Timing Analyzer.

• Be careful with your directory structure!

48/56



FPGA Compilation
You will have to go through a number of steps to map your design to the
actual FPGA.

49/56



Your Design
In lab 1, you will design a 7-segment LED display decoder. This is a simple
design that will help you to understand the FPGA design flow.

We will use four switches to input a 4-bit binary number, and the 7-segment
display will show the corresponding decimal number.

50/56



Your Design (ii)

51/56



Your Design (iii)

52/56



Verilog 101
• Verilog is a hardware description language (HDL) used to model electronic

systems.

• The first line above defines the module name and the ports, we take an
input of 4 bits and output 7 bits.

• The always block is a sequential block that is triggered by nothing, that
means, this is a combinational logic.

• The case statement is a conditional statement that will output the
corresponding 7-segment display.

53/56



Synthesis and Compilation
• Synthesis is the process of converting the Verilog code into a netlist.

• Compilation also includes the process of mapping the netlist to the FPGA,
we call this the place and route process.

• For these steps, you will use the Quartus Prime software, and you normally
would need to provide the FPGA device target for the tool, the constraints,
and the ping assignment.

54/56



Ping assignment
• The ping assignment is a file that tells the tool how to map the pins of your

design to the outside world.

55/56



Timing Analysis
• The tool provides a timing analysis report that tells you how fast your

design can run, in terms of clock rate (also known as FMax).
• This is a critical criteria for your design, as it tells you how fast your design

can run, and normally also impacts your latency.
• Timing models in place
• Tools check all possible paths

56/56


	General Introduction
	Introduction - Myself
	Introduction - Myself
	Introduction - Teaching and RAs
	Introduction - Where to find stuff?
	Objectives and delivery
	Intended learning outcomes
	Let’s be more specific: design an IoT system
	Let’s be more specific: accelerometer
	Let’s be more specific: the development board
	Let’s be more specific: AWS DB
	Structure and dates
	Phase 1 - Training
	Phase 2 - Team project
	Logistics

	An introduction to FPGAs
	Why an FPGA is an interesting device to consider
	Why an FPGA is an interesting device to consider
	The growing need of energy efficient computing
	The growing need of energy efficient computing
	The "ideal" computing device
	Approach 1
	Approach 2
	Approach 3
	The flexibility and performance trade-off
	Device comparison: multi-core CPUs
	Device comparison: GPUs
	Device comparison: FPGAs
	Heterogeneous computing
	FPGA design flow
	Field Programmable Gate Arrays (FPGAs)
	CLBs
	LUTs
	Programmable interconnect
	End of the Dinosaurs Age
	Modern FPGA devices –- heterogeneous
	Current available FPGAs from Intel
	Current available FPGAs from Intel
	Questions?

	An introduction to Lab1
	What is in this lab?
	Setting up your environment
	FPGA Compilation
	Your Design
	Verilog 101
	Synthesis and Compilation
	Ping assignment
	Timing Analysis


