Programming the NIOS II
processor and the accelerometer

Aaron Zhao, Imperial College London

An Introduction to Lab2

What is in this lab?

Design a NIOSII system.
Understand the design process of a NIOSII system.

Program the Max 10 FPGA chip on the DE10-Lite board with your soft
processor.

Write code that runs on the NIOS processor to display a message on a
terminal.

Explore and test the capabilities of your NIOS II system design.

3/36

Soft Vs. Hard processors
« Hard processors normally have a fixed architecture and is normally faster
» eg. ARM, x86
» NIOSII is a soft processor
» customizable (eg. size, performance)
» add or remove certain features (eg. floating-point units)
» custom instructions or extensions of the instruction set

« Soft processors are normally on FPGAs, running at a slower clock rate

4/36

Soft Vs. Hard processors (ii)

Hard Processors (eg. Intel, ARM, AMD) Soft Processors (MicroBlaze, NIOS ()

La0I0l]
-k
L M-

B

5/36

Processor architecture
« Register files

« Arithmetic logic unit (ALU)
iCache and dCache

Instruction decoding

Instruction bus and data bus

6/36

Processor architecture (ii)

Nios Il Processor Core
General Tightly Coupled
reset Brociel Purpose Instruction Memory
clock | i Registers 2
u_resetrequest ®
Address Control Instruction .
«cpu-resettaken | | Generation Registers Cache
imJ;rr:aGce JTAG Shadow Im Memory
eoftwa Debug Module | Exception e
h;ebugge? Controller R?;ts {—— Instruction Bus
Internal
P Interrupt
irq[31..0] ler
-m Memory
eic_port_data[44..0] IEmnII °9 Management
eic_port_valid > e PMnmovy ok
Unit Translation
Lookaside
Data Buffer
e s
Tightly Coupled
c“vsé""‘ ’ Custom oo
Signals Logic % Data o
Logic Cache .
.
Tightly Coupled
Memory
e, Required Optional
Module Module

7/36

Processor architecture - Register files

+ The ISA (Instruction Set Architecture) will always define a set of registers
which are used to store and load data between memory and the functional
units on the chip.

« Register file is a set of registers that can be accessed by the processor.

« Different types of registers
» Data storage (eg. RO-R7 in ARM)
» Instruction control (eg. PC, program counter)
» Special status and control registers (eg. carry, zero and overflow flags)

« Possible optimizations
» Register renaming

8/36

Processor architecture - ALU

+ Normally a piece of hardware that performs arithmetic and logical
operations, it normally takes
» two inputs
» an op-code
» produces one output
» maybe status in and outputs

Integer Integer
Operand Operand

A B
Status
Status
Opcode Y

Integer
Result

9/36

Processor architecture - Cache system

+ There are many design choices for the cache system

« Cache size, associativity, and replacement policy

+ Data cache and instruction cache

+ The general idea is to store frequently accessed data in the cache (which is
closer to the processing unit) to reduce the time it takes to access the data

10/36

Processor architecture - Cache system

This can soon become very complex, especially when you consider the
different levels of cache that are present in modern multi-processors.:

+ Caching complicates the ordering of all operations
» A memory location can be present in multiple caches
» How can all processors see the same value? Or how can they see the
same global order of all memory operations?
« It also affects the ordering of operations on a single memory location
» A single memory location can be present in multiple caches
» Makes it difficult for processors that have cached the same location to
have the correct value of that location (in the presence of updates to that
location)

11/36

Consistency and Coherence

+ Memory consistency: Global ordering of accesses to all memory locations, it
matters more to the programmer to reason about correctness in parallel
systems.

+ Cache Coherence: Local ordering of accesses to each cache block

12/36

The processor you will use

« Intel’s NIOSII soft-core processor

+ A NIOSII implementation is a set of design choices

« A functional unit (i.e. fp-mult) can be implemented in
» hardware
» emulated in software
» omitted completely...

 Another example is division support

13/36

What do you do in Lab2?

Instantiate a NIOSII processor in Qsys

This means you use Intel’s IP to create a NIOSII processor on the FPGA
device. You do not need to design the processor from scratch.

This is equivalent to writing System Verilog code to instantiate a processor
in an FPGA. Actually, there are a few open-source soft processors that you
can instantiate in an FPGA. One example is the RISC-V processor (Muntjac
https://github.com/lowRISC/muntjac).

Control the lighting sequence on LEDs through the NIOSII processor

The NIOSII processor will be connected to the LEDs on the DE10-Lite
board. You will write code that will control the lighting sequence on the
LEDs.

This is basically very similar to writing a program in C that controls the
GPIO pins on a Raspberry Pi.

14/36

https://github.com/lowRISC/muntjac

What do you do in Lab2? (ii

main()

switch_datain;
alt_putstr(“Hello from Nios II!\n");

alt_putstr("This is my first application!\n");

while (1){
switch_datain = IORD_ALTERA_AVALON_PTO_DATA(BUTTON_BASE);
switch_datain & (@b0800001111);

(switch_datain==0)
alt_putstr("b
{

(switch_datain
alt_putstr("n

if (switch_datain==1)
alt_putstr

if (switch_datain
alt_putstr("second

TOWR_ALTERA_AVALON_PTO_DATA(LED_BASE, switch_datain);
TOWR_ALTERA_AVALON_PTO_DATA(HEX®_BASE, switch_datain);

Logic Black

Resources

Intercannection

Hexoo)

wexop)

—ww

vexo)

15/36

An Introduction to Lab3

What is in this lab?

A typical IoT scenario, where a sensor is connected to a processor.

Design a NIOS II system that interfaces with the accelerometer on DE10-lite
board.

Understand the SPI interface.
Learn how to read the acceleration value provided by the accelerometer.
Design a low-pass FIR filter to process the readings.

Investigate the impact of using low arithmetic precision to the quality of
the results and the performance of your system.

17/36

Accelerometer
+ Analog Devices’ ADXL345 chip

« 3-axis accelerometer, it measures acceleration in three directions, which are
referred to as x-axis, y-axis and z-axis.

« Serial Peripheral Interface (SPI) / 12C

« 16-bit digital output

18/36

How does NIOS interact with the accelerometer

+ Add accelerometer_spi IP

» IP controls the accelerometer and provides an SPI interface to NIOS

» 58 internal registers

» Memory mapped through two 8-bit registers: Address and Data

» Memory mapped means they are mapped to specific memory addresses at

the time the core is instantiated in a Qsys-developed system.

Address

0x10004020

0x10004021

Address | Register Name | Description

0x32 DATAX0 Low-order byte of x-axis acceleration.
0x33 DATAX1 High-order byte of x-axis acceleration.
Address register 0x34 DATAYO Low-order byte of y-axis acceleration.
0x35 DATAYI High-order byte of y-axis acceleration.
Data register 0x36 DATAZ0 Low-order byte of z-axis acceleration.
0x37 DATAZI High-order byte of z-axis acceleration.

19/36

Serial Peripheral Interface (SPI)

« Synchronous Serial Communication

« Short distances

« Embedded systems

« Duplex communication and a Master-Slave architecture

Serial Peripheral Interface (SPI) SPI has four logic signals (which go by
alternative namings)

« SCLK : Serial Clock (clock signal from main)

+ MOSI : Main Out Sub In (data output from main)
« MISO : Main In Sub Out (data output from sub)

« CS: Chip Select

20/36

Serial Peripheral Interface (SPI) (ii)

SCLK
Avalon bus MOSI
NIOS ” Master e

SS

SPI communication
« Chip Select (CS) first, it is possible to have multiple slaves.
« Slave does not have the clock, you must provide one.

+ Duplex communication, you are transferring and receiving at the same
time.

21/36

Serial Peripheral Interface (SPI) (iii)

Shift Reg

SPI Sub

ster

cs
SCLK

2|10 l«-MOSI

17]6]5]4]3
|

»MISO

h A A

s SPI Main

Shift R

SCLK

Reg

ster

MOSI4—|7|6

5

413

312

1|0|

MISO

22/36

Program NIOS to read accelerometer values
« Understand code to interface with accelerometer
« Drive the LEDs with the accelerometer value

int main() {

alt_32 x_read;

alt_up_accelerometer_spi_dev * acc_dev;

acc_dev = alt_up_accelerometer_spi_open_dev("/dev/accelerometer_spi");

if (acc_dev == NULL) { // if return 1, check if the spi ip name is "accelerometer_spi"
return 1;

}

timer_init(sys_timer_isr);
while (1) {

alt_up_accelerometer_spi_read_x_axis(acc_dev, & x_read);
// alt_printf("raw data: %x\n", x_read);
convert_read(x_read, & level, & led);

}

return 0;

23/36

Program NIOS to read accelerometer values (ii)

« There is a main while LookUp function that reads the accelerometer values
and drives the LEDs.

+ The convert_read() function converts the x_value to led and level pair in
order to be used to drive the lighting up of the LEDs.

24/36

FIR filter implementation and optimisation

+ The plain implementation may have glitching, this is because we sample
the data at a specific rate and the data may not be smooth.

« In signal processing, we have learned that we can use a low-pass filter to
smooth this.

» Moving average with a 5-tap filter
« Extend this to a low-pass N-tap filter
» Use Matlab to design your filter
« Optimise you program
» Convert floats to fixed-point values
» Observe the impact on performance and results

» Implement these in C, so you can run them on the NIOS processor

25/36

FIR filter implementation and optimisation (ii)

+ Y

i 1 L 1 |]
50 100 150 200 250 G 360
Frequency (Hz)

o

26/36

Computation in different arithmetic formats

IEEE Float32 (FP32)

1-bit sign, 8-bit exponent, 23-bit mantissa .

O L e e L P e -
Exponent

1EEE Float16 (FP16) MiniFloat / Denormed Minifloat (DMF) Mantissa

1-bit sign, 5-bit exponent, 10-bit mantiisa 1-bit sign, 4-bit exponent, 3-bit mantiisa

l O d

Exp bias

Block Minifloat (BM) Block Floating Point (BFP) Block Logorithm (BL)
1-bit sign, E-bit exponent, M-bit mantissa 1-bit sign, M-bit mantissa 1-bit sign, E-bit exponent
B-bit shared exponent bias E-bit shared exponent B-bit shared exp bias

27/36

An Introduction to Lab4

What is in this lab?

+ Understand how to establish a communication process of a NIOSII system
with a host PC.

« Establish a number of functions/commands that would allow you to
communicate between the board and the host PC.

« Extra: Learn how to add off-chip memory to your system

29/36

What is off-chip memory?

A computer at it’s most basic contains a CPU and RAM connected by a bus
plus some I/O.

Off-chip memory refers to any kind of memory (usually the main system
RAM) that is not directly on the same die as the main CPU.

However, we have now seen different types of memory:

« DDR Memory: the most common one

« GDDR Memory: Graphics DDR Memory, similar to DDR but optimized for
graphics cards (GPUs)

« HBM Memory: Stands for High Bandwidth Memory, and is designed for
GPUs and other high-performance applications. HBM is more expensive
than GDDR but offers higher bandwidth and is more power efficient.

30/36

What is off-chip memory? (ii)

What is UART communication
« UART (universal asynchronous receiver-transmitter)
e Device to Device communication

« Asynchronous Serial Communication - (2 wires)

Agreed frequency of reading — Baud rate

« PC is the master

1 5-9 0-1
Start Parity
] Data Frame ,
Bit Bits

1-2

Stop
Bits

32/36

Lab structure
« Part 1: Give you an example to understand the communication
« Part 2: Integrate UART with Lab3

« Part 3: Add command to update the coefficient. Conversion of characters to
numbers

« Part 4: Plot received accelerometer data at real time

33/36

Final Group Project

What is in the final group project?

«» Use what you have learned in the labs to design a system that has
information flowing from sensors to cloud server and then back to sensor
or a local processing node.

+ Minimum functional requirements:

» Local processing of the accelerometer data

v

Establishing a cloud server to process events/information
Communicating information from the server back to the nodes in way
that the local processing can be impacted.

v

Use of two nodes

v

35/36

What I hope you have learned?
In an abstract way, I would say 99% of the computation is about:

1. The movement of the data
2. The processing of the data

So hopefully in this course you have learned how systems can be designed to
perform the above two aspects.

36/36

	An Introduction to Lab2
	What is in this lab?
	Soft Vs. Hard processors
	Processor architecture
	Processor architecture - Register files
	Processor architecture - ALU
	Processor architecture - Cache system
	Processor architecture - Cache system
	Consistency and Coherence
	The processor you will use
	What do you do in Lab2?

	An Introduction to Lab3
	What is in this lab?
	Accelerometer
	How does NIOS interact with the accelerometer
	Serial Peripheral Interface (SPI)
	Program NIOS to read accelerometer values
	FIR filter implementation and optimisation
	Computation in different arithmetic formats

	An Introduction to Lab4
	What is in this lab?
	What is off-chip memory?
	What is UART communication
	Lab structure

	Final Group Project
	What is in the final group project?
	What I hope you have learned?

